Skip to main content

Magnetorheological Elastomers and Their Applications

  • Chapter
  • First Online:
Advances in Elastomers I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

Abstract

Magnetorheological elastomers (MRE) are smart materials whose modulus or mechanical performances can be controlled by an external magnetic field. In this chapter, the current research on the MRE materials fabrication, performance characterisation, modelling and applications is reviewed and discussed. Either anistropic or isotropic or MRE materials are fabricated by different curing conditions where magnetic field is applied or not. Anistropic MREs exhibit higher MR effects than isotropic MREs. Both steady-state and dynamic performances were studied through both experimental and theoretical approaches. The modelling approaches were developed to predict mechanical performances of MREs with both simple and complex structures. The sensing capabilities of MREs under different loading conditions were also investigated. The review also includes recent representative MRE applications such as adaptive tuned vibration absorbers and novel force sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlson, J.D., Jolly, M.R.: MR fluid, foam and elastomer devices. Mechatronics. 10, 555–569 (2000)

    Article  Google Scholar 

  2. Shiga, T., Okada, A., Kurauchi, T.: Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci. 58, 787–792 (1995)

    Article  CAS  Google Scholar 

  3. Jolly, M.R., Carlson, J.D., Munoz, B.C., Bullions, T.A.: The magnetoviscoelastic response of elastomers composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996)

    Article  CAS  Google Scholar 

  4. Ginder, J.M., Clark, S.M., Schlotter, W.F., Nichols, M.E.: Magnetostrictive phenomena in magnetorheological elastomers. Int. J. Mod. Phys. B. 16(17–18), 2412–2418 (2002)

    Article  CAS  Google Scholar 

  5. Zhou, G.Y.: Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 12, 139–146 (2003)

    Article  Google Scholar 

  6. Chen, L., Gong, X.L., Jiang, W.Q., et al.: Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci. 42, 5483–5489 (2007)

    Article  CAS  Google Scholar 

  7. Hu, Y., Wang, Y.L., Gong, X.L., et al.: New magnetorheological elastomers based on polyurethane/Si-rubber hybrid. Polym. Test. 24, 324–329 (2005)

    Article  CAS  Google Scholar 

  8. Bossis, G., Abbo, C., Cutillas, S., et al.: Electroactive and electrostructured elastomers. Int. J. Mod. Phys. B. 15(6–7), 564–573 (2001)

    Article  CAS  Google Scholar 

  9. Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003)

    Article  CAS  Google Scholar 

  10. Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003)

    Article  CAS  Google Scholar 

  11. Deng, H.X., Gong, X.L., Wang, L.H.: Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater. Struct. 15, N111–N116 (2006)

    Article  Google Scholar 

  12. Ni, Z.C., Gong, X.L., Li, J.F., et al.: Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastómer. J. Intel. Mater. Syst. Struct. 20, 1195–1202 (2009)

    Article  Google Scholar 

  13. Xu, Z.B., Gong, X.L., Liao, G.J., et al.: An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J. Intel. Mater. Syst. Struct. 21, 1039–1047 (2010)

    Article  Google Scholar 

  14. Zhang, X.Z., Li, W.H.: Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Struct. Syst. 5(5), 517–529 (2009)

    Google Scholar 

  15. Hoang, N., Zhang, N., Du, H.: An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction. Smart Mater. Struct. 20, 015019 (2011)

    Article  Google Scholar 

  16. Tian, T.F., Li, W.H., Alici, G., et al.: Microstructure and magnetorheology of graphite based MR elastomers. Rheologica Acta, print online. doi:10.1007/s00397-011-0567-9

  17. Lokander, M., Stenberg, B.: Performance of isotropic magnetorheological rubber materials. Polym. Test. 22, 245–251 (2003)

    Article  CAS  Google Scholar 

  18. Lokander, M., Stenberg, B.: Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 22, 677–680 (2003)

    Article  CAS  Google Scholar 

  19. Gong, X.L., Zhang, X.Z., Zhang, P.Q.: Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test. 24, 669–676 (2005)

    Article  CAS  Google Scholar 

  20. Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)

    Article  CAS  Google Scholar 

  21. Ginder, J.M., Nichols, M.E., Elie, L.D., Clark, S.M.: Controllable stiffness components based on magnetorheological elastomers. In: Wereley, N.M. (ed.) Smart Structures and Materials 2000: Smart Structures and Integrated Systems, Proceedings of SPIE 3985, pp. 418–425. (2000)

    Chapter  Google Scholar 

  22. Li, W.H., Du, H., Chen, G., et al.: Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol. Acta. 42(3), 280–286 (2003)

    CAS  Google Scholar 

  23. Li, W.H., Zhou, Y., Tian, T.F.: Viscoelastic properties of MR elastomers under harmonic loading. Rheol. Acta. 49, 733–740 (2010)

    Article  CAS  Google Scholar 

  24. Jolly, M.R., Carlson, J.D., Munoz, B.C.: A model of the behaviour of magnetorheological materials. Smart Mater. Struct. 5, 607–614 (1996)

    Article  CAS  Google Scholar 

  25. Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)

    Article  CAS  Google Scholar 

  26. Shen, Y., Golnaraghi, M.F., Heppler, G.R.: Experimental research and modeling of magnetorheological elastomers. J. Intel. Mater. Syst. Struct. 15, 27–35 (2004)

    Article  Google Scholar 

  27. Zhang, X.Z., Li, W.H., Gong, X.L.: An effective permeability model to predict field-dependent modulus of magnetorheological elastomers. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1910–1916 (2008)

    Article  Google Scholar 

  28. Li, W.H., Du, H., Chen, G., et al.: Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol. Acta. 42, 280–286 (2003)

    CAS  Google Scholar 

  29. Li, W.H., Du, H., Chen, G., et al.: Nonlinear rheological behavior of MR fluids: step strain experiments. Smart Mater. Struct. 11, 209–217 (2002)

    Article  Google Scholar 

  30. Kchit, N., Bossis, G.: Electrical resistivity mechanism in magnetorheological elastomer. J. Phys. D-Appl. Phys. 42(10), 5505 (2009)

    Google Scholar 

  31. Wang, X.J., Gordaninejad, F., Calgar, M., et al.: Sensing behavior of magnetorheological elastomers. J. Mech. Des. 131(9), 6 (2009)

    Article  Google Scholar 

  32. Bica, I.: Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater. Lett. 63(26), 2230–2232 (2009)

    Article  CAS  Google Scholar 

  33. Li, W.H., Kostidis, K., Zhang, X.Z., et al.: Development of a force sensor working with MR elastomers. IEEE/ASME Int. Conf. Adv. Intel. Mechatron. 1–3, 233–238 (2009)

    Article  Google Scholar 

  34. Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86–93 (2000)

    Article  Google Scholar 

  35. McLachlan, D.S.: Analytical functions for the dc and ac conductivity of conductor-insulator composites. J. Electroceram. 5(2), 93–110 (2000)

    Article  CAS  Google Scholar 

  36. Woo, L.Y., Wansom, S., Hixson, A.D., Campo, M.A., Mason, T.O.: A universal equivalent circuit model for the impedance response of composites. J. Mater. Sci. 38(10), 2265–2270 (2003)

    Article  CAS  Google Scholar 

  37. Weinberg, Z.A.: On tunneling in metal-oxide-silicon structures. J. Appl. Phys. 53(7), 5052–5056 (1982)

    Article  CAS  Google Scholar 

  38. Serdouk, S., Hayn, R., Autran, J.L.: Theory of spin-dependent tunneling current in ferromagnetic metal-oxide-silicon structures. Journal of Applied Physics, vol. 102(11), p. 113707-1-113707-5 (2007)

    Google Scholar 

  39. Zhupanska, O.I., Ulitko, A.F.: Contact with friction of a rigid cylinder with an elastic half-space. J. Mech. Phys. Solids. 53(5), 975–999 (2005)

    Article  Google Scholar 

  40. Etsion, I., Levinson, O., Halperin, G., Varenberg, M.: Experimental investigation of the elastic-plastic contact area and static friction of a sphere on flat. J. Tribol. 127(1), 47–50 (2005)

    Article  Google Scholar 

  41. Stewart, W.M., Ginder, J.M., Elie, L.D.: Method and apparatus for reducing brake shudder. US Patent 5816587, 1998

    Google Scholar 

  42. Hitchcock, G.H., Gordaninejad, F., Fuchs, A.: Controllable magneto-rheological elastomer vibration isolator. US Patent 7086507, 2006

    Google Scholar 

  43. Hitchcock, G.H., Gordaninejad, F., Fuchs, A.: Controllable magneto-rheological elastomer vibration isolator. US Patent 20050011710, 2005

    Google Scholar 

  44. Lerner, A.A., Cunefare, K.A.: Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore. US Patent 7102474, 2006

    Google Scholar 

  45. Lerner, A.A., Cunefare, K.A.: Adaptable vibration absorber employing a magnetorheological elastomer with variable gap length and methods and systems therefore. US Patent 20050040922, 2005

    Google Scholar 

  46. Albanese, A.M.: The design and implementation of a magnetorheological silicone composite state-switched absorber. A Thesis for the Degree Master of Science, Georgia Institute of Technology (2005)

    Google Scholar 

  47. Holdhusen, M.H.: The state-switched absorber used for vibration control of continuous systems. A Dissertation for the Degree Doctor of Philosophy, Georgia Institute of Technology (2005)

    Google Scholar 

  48. Deng, H.X., Gong, X.L.: Adaptive tuned vibration absorber based on magnetorheological elastomer. J. Intel. Mater. Syst. Struct. 18(12), 1205–1210 (2007)

    Article  Google Scholar 

  49. Elie, L.D., Ginder, J.M., Mark, J.S., Nichols, M.E.: Method and apparatus for measuring displacement and force. US Patent 5814999, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, W.H., Zhang, X.Z., Du, H. (2013). Magnetorheological Elastomers and Their Applications. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_12

Download citation

Publish with us

Policies and ethics