Skip to main content

On Stability of Discretizations of the Helmholtz Equation

  • Chapter
  • First Online:
Numerical Analysis of Multiscale Problems

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 83))

Abstract

We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete k-explicit stability (including k-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size h and the approximation order p are selected such that khp is sufficiently small and p = O(logk), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth, P. Monk, and W. Muniz. Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput., 27(1-3):5–40, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ainsworth. Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal., 42(2):553–575, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Ainsworth and H.A. Wajid. Dispersive and dissipative behavior of the spectral element method. SIAM J. Numer. Anal., 47(5):3910–3937, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. J. Astley and P. Gamallo. Special short wave elements for flow acoustics. Comput. Methods Appl. Mech. Engrg., 194(2-5):341–353, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. K. Aziz, R. B. Kellogg, and A. B. Stephens. A two point boundary value problem with a rapidly oscillating solution. Numer. Math., 53(1-2):107–121, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Babuška and B.Q. Guo. The h − p version of the finite element method. Part 1: The basic approximation results. Computational Mechanics, 1:21–41, 1986.

    Google Scholar 

  7. I. Babuška, F. Ihlenburg, E. Paik, and S. Sauter. A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution. Comput. Meth. Appl. Mech. Engrg., 128:325–360, 1995.

    Article  MATH  Google Scholar 

  8. I. Babuška and S. Sauter. Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Review, 42:451–484, 2000.

    MATH  MathSciNet  Google Scholar 

  9. L. Banjai and S. Sauter. A refined Galerkin error and stability analysis for highly indefinite variational problems. SIAM J. Numer. Anal., 45(1):37–53, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. H. Barnett and T. Betcke. An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Stat. Comp., 32:1417–1441, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Bayliss, C.I. Goldstein, and E. Turkel. On accuracy conditions for the numerical computation of waves. J. Comput. Physics, 59:396–404, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Betcke, S. Chandler-Wilde, I. Graham, S. Langdon, and M. Lindner. Condition number estimates for combined potential integral operators in acoustics and their boundary element discretization. Numer. Meths. PDEs, 27:31–69, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  13. S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods. Springer Verlag, 1994.

    Google Scholar 

  14. A. Buffa and P. Monk. Error estimates for the ultra weak variational formulation of the Helmholtz equation. M2AN (Math. Modelling and Numer. Anal.), 42(6):925–940, 2008.

    Google Scholar 

  15. O. Cessenat and B. Després. application of the ultra-weak variational formulation to the 2d Helmholtz problem. SIAM J. Numer. Anal., 35:255–299, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  16. O. Cessenat and B. Després. Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comput. Acoust., 11:227–238, 2003.

    Article  MathSciNet  Google Scholar 

  17. S. Chandler-Wilde and I. Graham. Boundary integral methods in high frequency scattering. In B. Engquist, A. Fokas, E. Hairer, and A. Iserles, editors, highly oscillatory problems. Cambridge University Press, 2009.

    Google Scholar 

  18. S.N. Chandler-Wilde and P. Monk. Wave-number-explicit bounds in time-harmonic scattering. SIAM J. Math. Anal, 39:1428–1455, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Cummings and X. Feng. Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci., 16(1):139–160, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Deraemaeker, I. Babuška, and P. Bouillard. Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions. Int. J. Numer. Meth. Eng., 46(4), 1999.

    Google Scholar 

  21. S. Esterhazy and J.M. Melenk. On stability of discretizations of the Helmholtz equation (extended version). Technical Report 01, Inst. for Analysis and Sci. Computing, Vienna Univ. of Technology, 2011. Available at http://www.asc.tuwien.ac.at. arXiv:1105.2112

  22. C. Farhat, I. Harari, and U. Hetmaniuk. A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comp. Meth. Appl. Mech. Eng., 192:1389–1419, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Farhat, R. Tezaur, and P. Weidemann-Goiran. Higher-order extensions of discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Eng., 61, 2004.

    Google Scholar 

  24. X. Feng and H. Wu. Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal., 47(4):2872–2896, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  25. X. Feng and H. Wu. hp-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp., 80:1997–2025, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  26. X. Feng and Y. Xing. Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number. 2010. arXiv:1010.4563v1 [math.NA].

    Google Scholar 

  27. C. Gittelson, R. Hiptmair, and I. Perugia. Plane wave discontinuous Galerkin methods. M2AN (Mathematical Modelling and Numerical Analysis), 43:297–331, 2009.

    Google Scholar 

  28. P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.

    Google Scholar 

  29. I. Harari. A survey of finite element methods for time-harmonic acoustics. Comput. Methods Appl. Mech. Engrg., 195(13-16):1594–1607, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  30. I. Harari and T. J. R. Hughes. Galerkin/least-squares finite element methods for the reduced wave equation with nonreflecting boundary conditions in unbounded domains. Comput. Methods Appl. Mech. Engrg., 98(3):411–454, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  31. U. Hetmaniuk. Stability estimates for a class of Helmholtz problems. Commun. Math. Sci., 5(3):665–678, 2007.

    MATH  MathSciNet  Google Scholar 

  32. R. Hiptmair, A. Moiola, and I. Perugia. Approximation by plane waves. Technical Report 2009-27, Seminar für Angewandte Mathematik, ETH Zürich, 2009.

    Google Scholar 

  33. R. Hiptmair, A. Moiola, and I. Perugia. Plane wave discontinuous Galerkin methods for the 2d Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal., 49:264–284, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  34. T. Huttunen, P. Gamallo, and R. J. Astley. Comparison of two wave element methods for the Helmholtz problem. Comm. Numer. Methods Engrg., 25(1):35–52, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  35. T. Huttunen and P. Monk. The use of plane waves to approximate wave propagation in anisotropic media. J. Computational Mathematics, 25:350–367, 2007.

    MathSciNet  Google Scholar 

  36. F. Ihlenburg. Finite Element Analysis of Acoustic Scattering, volume 132 of Applied Mathematical Sciences. Springer Verlag, 1998.

    Google Scholar 

  37. F. Ihlenburg and I. Babuška. Finite element solution to the Helmholtz equation with high wave number. Part II: The hp-version of the FEM. SIAM J. Numer. Anal., 34:315–358, 1997.

    Google Scholar 

  38. O. Laghrouche and P. Bettess. Solving short wave problems using special finite elements; towards an adaptive approach. In J. Whiteman, editor, Mathematics of Finite Elements and Applications X, pages 181–195. Elsevier, 2000.

    Google Scholar 

  39. O. Laghrouche, P. Bettess, and J. Astley. Modelling of short wave diffraction problems using approximation systems of plane waves. Internat. J. Numer. Meths. Engrg., 54:1501–1533, 2002.

    Article  MATH  Google Scholar 

  40. R. Leis. Initial Boundary Value Problems in Mathematical Physics. Teubner, Wiley, 1986.

    MATH  Google Scholar 

  41. Z. C. Li. The Trefftz method for the Helmholtz equation with degeneracy. Appl. Numer. Math., 58(2):131–159, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  42. M. Löhndorf and J.M. Melenk. Wavenumber-explicit hp-BEM for high frequency scattering. Technical Report 02/2010, Institute for Analysis and Scientific Computing, TU Wien, 2010.

    Google Scholar 

  43. T. Luostari, T. Huttunen, and P. Monk. Plane wave methods for approximating the time harmonic wave equation. In Highly oscillatory problems, volume 366 of London Math. Soc. Lecture Note Ser., pages 127–153. Cambridge Univ. Press, Cambridge, 2009.

    Google Scholar 

  44. J. M. Melenk. On Generalized Finite Element Methods. PhD thesis, Univ. of Maryland, 1995.

    Google Scholar 

  45. J.M. Melenk. hp finite element methods for singular perturbations, volume 1796 of Lecture Notes in Mathematics. Springer Verlag, 2002.

    Google Scholar 

  46. J.M. Melenk. On approximation in meshless methods. In J. Blowey and A. Craig, editors, Frontier in Numerical Analysis, Durham 2004. Springer Verlag, 2005.

    Google Scholar 

  47. J.M. Melenk. Mapping properties of combined field Helmholtz boundary integral operators. Technical Report 01/2010, Institute for Analysis and Scientific Computing, TU Wien, 2010.

    Google Scholar 

  48. J.M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications. Comput. Meth. Appl. Mech. Engrg., 139:289–314, 1996.

    Article  MATH  Google Scholar 

  49. J.M. Melenk and S. Sauter. Wavenumber explicit convergence analysis for finite element discretizations of the Helmholtz equation. SIAM J. Numer. Anal., 49:1210–1243, 2011.

    Article  MATH  MathSciNet  Google Scholar 

  50. J.M. Melenk and S. Sauter. Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comp., 79:1871–1914, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Moiola. Approximation properties of plane wave spaces and application to the analysis of the plane wave discontinuous Galerkin method. Technical Report 2009-06, Seminar für Angewandte Mathematik, ETH Zürich, 2009.

    Google Scholar 

  52. P. Monk, J. Schöberl, and A. Sinwel. Hybridizing Raviart-Thomas elements for the Helmholtz equation. Electromagnetics, 30:149–176, 2010.

    Article  Google Scholar 

  53. P. Monk and D.Q. Wang. A least squares methods for the Helmholtz equation. Comput. Meth. Appl. Mech. Engrg., 175:121–136, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  54. C. S. Morawetz and D. Ludwig. An inequality for the reduced wave operator and the justification of geometrical optics. Comm. Pure Appl. Math., 21:187–203, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  55. J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson, 1967.

    Google Scholar 

  56. P. Ortiz. Finite elements using a plane-wave basis for scattering of surface water waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362(1816):525–540, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  57. E. Perrey-Debain, O. Laghrouche, P. Bettess, and J. Trevelyan. Plane wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. Lond. A, 362:561–577, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  58. B. Pluymers, B. van Hal, D. Vandepitte, and W. Desmet. Trefftz-based methods for time-harmonic acoustics. Arch. Comput. Methods Eng., 14(4):343–381, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  59. S. I. Pohožaev. On the eigenfunctions of the equation Δu + λf(u) = 0. Dokl. Akad. Nauk SSSR, 165:36–39, 1965.

    MathSciNet  Google Scholar 

  60. S.A. Sauter. A refined finite element convergence theory for highly indefinite Helmholtz problems. Computing, 78(2):101–115, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  61. S.A. Sauter and C. Schwab. Boundary element methods. Springer Verlag, 2010.

    Google Scholar 

  62. Alfred H. Schatz. An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp., 28:959–962, 1974.

    Google Scholar 

  63. J. Schöberl. FE Software Netgen/NGSolve vers. 4.13. http://sourceforge.net/projects/ngsolve/

  64. J. Schöberl. NETGEN - an advancing front 2d/3d-mesh generator based on abstract rules. Computing and Visualization in Science, 1(1):41–52.

    Google Scholar 

  65. C. Schwab. p- and hp-Finite Element Methods. Oxford University Press, 1998.

    Google Scholar 

  66. E.A. Spence, S.N. Chandler-Wilde, I.G. Graham, and V.P. Smyshlyaev. A new frequency-uniform coercive boundary integral equation for acoustic scattering. Comm. Pure Appl. Math., 60:1384–1415, 2011.

    Article  Google Scholar 

  67. E.M. Stein. Singular integrals and differentiability properties of functions. Princeton University Press, 1970.

    Google Scholar 

  68. M. Stojek. Least squares Trefftz-type elements for the Helmholtz equation. Internat. J. Numer. Meths. Engrg., 41:831–849, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  69. T. Strouboulis, I. Babuška, and R. Hidajat. The generalized finite element method for Helmholtz equation: theory, computation, and open problems. Comput. Methods Appl. Mech. Engrg., 195(37-40):4711–4731, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  70. R. Tezaur and C. Farhat. Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems. Internat. J. Numer. Meths. Engrg., 66:796–815, 2006.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Financial support by the Vienna Science and Technology Fund (WWTF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Melenk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Esterhazy, S., Melenk, J.M. (2012). On Stability of Discretizations of the Helmholtz Equation. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds) Numerical Analysis of Multiscale Problems. Lecture Notes in Computational Science and Engineering, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22061-6_9

Download citation

Publish with us

Policies and ethics