Skip to main content

Discrete Empirical Interpolation in POD Model Order Reduction of Drift-Diffusion Equations in Electrical Networks

  • Chapter
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2010

Part of the book series: Mathematics in Industry ((TECMI,volume 16))

Abstract

We consider model order reduction of integrated circuits with semiconductors modeled by modified nodal analysis and drift-diffusion (DD) equations. The DD-equations are discretized in space using a mixed finite element method. This discretization yields a high dimensional, nonlinear system of differential-algebraic equations. Proper orthogonal decomposition is used to reduce the dimension of this model. Since the computational complexity of the reduced order model through the nonlinearity of the DD equations still depends on the number of variables of the full model we apply the discrete empirical interpolation method to further reduce the computational complexity. We provide numerical comparisons which demonstrate the performance of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II – a General Purpose Object Oriented Finite Element Library. ACM Trans. Math. Softw. 33(4) (2007)

    Google Scholar 

  2. Brezzi, F., Marini, L., Micheletti, S., Pietra, P., Sacco, R., Wang, S.: Discretization of Semiconductor Device Problems. I. Schilders, W. H. A. et al. (ed.) Handbook of Numerical Analysis, vol. XIII, pp. 317–441, Elsevier/North Holland, Amsterdam (2005)

    Google Scholar 

  3. Chaturantabut, S., Sorensen, D.C.: Nonlinear Model Reduction via Discrete Empirical Interpolation. SIAM J. Scientific Comput. 32(5), 2737–2764 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A Supernodal Approach to Sparse Partial Pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Günther, M., Feldmann, U., ter Maten, J.: Modelling and Discretization of Circuit Problems. Schilders, W.H.A. et al. (ed.) Handbook of Numerical Analysis, vol. 13, pp. 523–629, Elsevier/North Holland, Amsterdam (2005)

    Google Scholar 

  6. Hinze, M., Kunkel, M.: Residual Based Sampling in POD Model Order Reduction of Drift-Diffusion Equations in Parametrized Electrical Networks. J. Appl. Math. Mech. 91(9), 1–14 (2011) URL http://arxiv.org/abs/1003.0551

    Google Scholar 

  7. Hinze, M., Kunkel, M., Vierling, M.: POD model order reduction of drift-diffusion equations in electrical networks. In: ter Maten, E. Jan W. (eds.) Lecture Notes in Electrical Engineering, vol. 74, Benner, Peter; Hinze, Michael (2011)

    Google Scholar 

  8. Markowich, P.: The Stationary Semiconductor Device Equations. Computational Microelectronics. Springer, New York (1986)

    Google Scholar 

  9. Patera, A., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0. Copyright MIT 2006–2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering (2007)

    Google Scholar 

  10. Petzold, L.R.: A Description of DASSL: A Differential/Algebraic System Solver. IMACS Trans. Scientific Comput. 1, 65–68 (1993)

    Google Scholar 

  11. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984)

    Book  Google Scholar 

  12. Sirovich, L.: Turbulence and the Dynamics of Coherent Structures I: Coherent Structures. II: Symmetries and Transformations. III: Dynamics and Scaling. Q. Appl. Math. 45, 561–590 (1987)

    MATH  MathSciNet  Google Scholar 

  13. Tischendorf, C.: Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation. Habilitation thesis, Humboldt-University of Berlin (2003)

    Google Scholar 

  14. Walther, A., Griewank, A.: A Package for Automatic Differentiation of Algorithms written in C/C++. URL https://projects.coin-or.org/ADOL-C

Download references

Acknowledgements

The work reported in this paper was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03HIPAE5. Responsibility for the contents of this publication rests with the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinze, M., Kunkel, M. (2012). Discrete Empirical Interpolation in POD Model Order Reduction of Drift-Diffusion Equations in Electrical Networks. In: Michielsen, B., Poirier, JR. (eds) Scientific Computing in Electrical Engineering SCEE 2010. Mathematics in Industry(), vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22453-9_45

Download citation

Publish with us

Policies and ethics