Skip to main content

The Molecular Basis of Gonadal Development and Disorders of Sex Development

  • Chapter
  • First Online:
Disorders of Sex Development

Abstract

Disorders of Sex Development (DSD) are congenital conditions where the development of chromosomal, gonadal or anatomical sex is atypical. In most cases this is due to a breakdown of gene regulatory networks that are responsible for appropriate gonad development. Studies in humans and mice have identified a number of genes that play critical roles in testis and ovary development. In this chapter we review some of the key genes involved in gonad development and describe how defects affecting these genes result in DSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann JC, Ito M, Hindmarsh PC et al (1999) A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22(2):125–126

    Article  PubMed  CAS  Google Scholar 

  • Arango NA, Lovell-Badge R, Behringer RR (1999) Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99(4):409–419

    Article  PubMed  CAS  Google Scholar 

  • Armstrong JF, Pritchard-Jones K, Bickmore WA et al (1993) The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40(1–2):85–97

    Article  PubMed  CAS  Google Scholar 

  • Barbaro M, Oscarson M, Schoumans J et al (2007) Isolated 46,XY gonadal dysgenesis in two sisters caused by a Xp21.2 interstitial duplication containing the DAX1 gene. J Clin Endocrinol Metab 92(8):3305–3313

    Article  PubMed  CAS  Google Scholar 

  • Barbaro M, Balsamo A, Anderlid BM et al (2009) Characteri­zation of deletions at 9p affecting the candidate regions for sex reversal and deletion 9p syndrome by MLPA. Eur J Hum Genet 17(11):1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Barbaux S, Niaudet P, Gubler MC et al (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17(4):467–470

    Article  PubMed  CAS  Google Scholar 

  • Barrionuevo F, Bagheri-Fam S, Klattig J et al (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74(1):195–201

    Article  PubMed  CAS  Google Scholar 

  • Baumstark A, Barbi G, Djalali M et al (1996) Xp-duplications with and without sex reversal. Hum Genet 97(1):79–86

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Harley VR (2007) Wnt4 action in gonadal development and sex determination. Int J Biochem Cell Biol 39(1):31–43

    Article  PubMed  CAS  Google Scholar 

  • Berta P, Hawkins JR, Sinclair AH et al (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348(6300):448–450

    Article  PubMed  CAS  Google Scholar 

  • Biason-Lauber A, Konrad D, Navratil F et al (2004) A WNT4 mutation associated with Mullerian-duct regression and virilization in a 46, XX woman. N Engl J Med 351(8):792–798

    Article  PubMed  CAS  Google Scholar 

  • Biason-Lauber A, Konrad D, Meyer M et al (2009) Ovaries and female phenotype in a girl with 46, XY karyotype and mutations in the CBX2 gene. Am J Hum Genet 84(5):658–663

    Article  PubMed  CAS  Google Scholar 

  • Bowles J, Cooper L, Berkman J et al (1999) Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nat Genet 22(4):405–408

    Article  PubMed  CAS  Google Scholar 

  • Burris TP, Guo W, Le T et al (1995) Identification of a putative steroidogenic factor-1 response element in the DAX-1 promoter. Biochem Biophys Res Commun 214(2):576–581

    Article  PubMed  CAS  Google Scholar 

  • Calvari V, Bertini V, De Grandi A et al (2000) A new submicroscopic deletion that refines the 9p region for sex reversal. Genomics 65(3):203–212

    Article  PubMed  CAS  Google Scholar 

  • Cameron FJ, Sinclair AH (1997) Mutations in SRY and SOX9: testis-determining genes. Hum Mutat 9(5):388–395

    Article  PubMed  CAS  Google Scholar 

  • Chassot AA, Ranc F, Gregoire EP et al (2008) Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17(9):1264–1277

    Article  PubMed  CAS  Google Scholar 

  • Colvin JS, Green RP, Schmahl J et al (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104(6):875–889

    Article  PubMed  CAS  Google Scholar 

  • Crisponi L, Deiana M, Loi A et al (2001) The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27(2):159–166

    Article  PubMed  CAS  Google Scholar 

  • de Santa BP, Mejean C, Moniot B et al (2001) Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 64(3):775–783

    Article  Google Scholar 

  • Foster JW, Dominguez-Steglich MA, Guioli S et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372(6506):525–530

    Article  PubMed  CAS  Google Scholar 

  • Giese K, Cox J, Grosschedl R (1992) The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69(1):185–195

    Article  PubMed  CAS  Google Scholar 

  • Gordon CT, Tan TY, Benko S et al (2009) Long-range regulation at the SOX9 locus in development and disease. J Med Genet 46(10):649–656

    Article  PubMed  CAS  Google Scholar 

  • Hammes A, Guo JK, Lutsch G et al (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106(3):319–329

    Article  PubMed  CAS  Google Scholar 

  • Hanley NA, Hagan DM, Clement-Jones M et al (2000) SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91(1–2):403–407

    Article  PubMed  CAS  Google Scholar 

  • Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10(4):233–240

    Article  PubMed  CAS  Google Scholar 

  • Hossain A, Saunders GF (2001) The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276(20):16817–16823

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Wang S, Ning Y et al (1999) Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87(4):349–353

    Article  PubMed  CAS  Google Scholar 

  • Hughes IA, Houk C, Ahmed SF et al (2006) Consensus statement on management of intersex disorders. Arch Dis Child 91(7):554–563

    Article  PubMed  CAS  Google Scholar 

  • Jordan BK, Mohammed M, Ching ST et al (2001) Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet 68(5):1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Jordan BK, Shen JH, Olaso R et al (2003) Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc Natl Acad Sci USA 100(19):10866–10871

    Article  PubMed  CAS  Google Scholar 

  • Katoh-Fukui Y, Tsuchiya R, Shiroishi T et al (1998) Male-to-female sex reversal in M33 mutant mice. Nature 393(6686):688–692

    Article  PubMed  CAS  Google Scholar 

  • Katoh-Fukui Y, Owaki A, Toyama Y et al (2005) Mouse Polycomb M33 is required for splenic vascular and adrenal gland formation through regulating Ad4BP/SF1 expression. Blood 106(5):1612–1620

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Capel B (2006) Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev Dyn 235(9):2292–2300

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Kobayashi A, Sekido R et al (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4(6):e187

    Article  PubMed  Google Scholar 

  • Kim Y, Bingham N, Sekido R et al (2007) Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proc Natl Acad Sci USA 104(42):16558–16563

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N et al (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351(6322):117–121

    Article  PubMed  CAS  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM et al (1993) WT-1 is required for early kidney development. Cell 74(4):679–691

    Article  PubMed  CAS  Google Scholar 

  • Lourenco D, Brauner R, Lin L et al (2009) Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med 360(12):1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Maatouk DM, DiNapoli L, Alvers A et al (2008) Stabilization of beta-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 17(19):2949–2955

    Article  PubMed  CAS  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A et al (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417(6888):559–563

    Article  PubMed  CAS  Google Scholar 

  • Moniot B, Berta P, Scherer G et al (2000) Male specific expression suggests role of DMRT1 in human sex determination. Mech Dev 91(1–2):323–325

    Article  PubMed  CAS  Google Scholar 

  • Morais da Silva S, Hacker A, Harley V et al (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14(1):62–68

    Article  PubMed  CAS  Google Scholar 

  • Muscatelli F, Strom TM, Walker AP et al (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372(6507):672–676

    Article  PubMed  CAS  Google Scholar 

  • Ottolenghi C, Omari S, Garcia-Ortiz JE et al (2005) Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14(14):2053–2062

    Article  PubMed  CAS  Google Scholar 

  • Ottolenghi C, Pelosi E, Tran J et al (2007) Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16(23):2795–2804

    Article  PubMed  CAS  Google Scholar 

  • Pailhoux E, Vigier B, Chaffaux S et al (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29(4):453–458

    Article  PubMed  CAS  Google Scholar 

  • Parma P, Radi O, Vidal V et al (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38(11):1304–1309

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Bruening W, Li FP et al (1991) WT1 mutations contribute to abnormal genital system development and hereditary Wilms’ tumour. Nature 353(6343):431–434

    Article  PubMed  CAS  Google Scholar 

  • Poulat F, Girard F, Chevron MP et al (1995) Nuclear localization of the testis determining gene product SRY. J Cell Biol 128(5):737–748

    Article  PubMed  CAS  Google Scholar 

  • Raymond CS, Parker ED, Kettlewell JR et al (1999) A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum Mol Genet 8(6):989–996

    Article  PubMed  CAS  Google Scholar 

  • Raymond CS, Murphy MW, O’Sullivan MG et al (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14(20):2587–2595

    Article  PubMed  CAS  Google Scholar 

  • Sanlaville D, Vialard F, Thepot F et al (2004) Functional disomy of Xp including duplication of DAX1 gene with sex reversal due to t(X;Y)(p21.2;p11.3). Am J Med Genet 128(3):325–330

    Article  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453(7197):930–934

    Article  PubMed  CAS  Google Scholar 

  • Sekido R, Lovell-Badge R (2009) Sex determination and SRY: down to a wink and a nudge? Trends Genet 25(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Sekido R, Bar I, Narvaez V et al (2004) SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274(2):271–279

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281):240–244

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, McClive PJ, Western PS et al (1999) Conservation of a sex-determining gene. Nature 402(6762):601–602

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Roeszler KN, Ohnesorg T et al (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461(7261):267–271

    Article  PubMed  CAS  Google Scholar 

  • Swain A, Zanaria E, Hacker A et al (1996) Mouse Dax1 expression is consistent with a role in sex determination as well as in adrenal and hypothalamus function. Nat Genet 12(4):404–409

    Article  PubMed  CAS  Google Scholar 

  • Swain A, Narvaez V, Burgoyne P et al (1998) Dax1 antagonizes Sry action in mammalian sex determination. Nature 391(6669):761–767

    Article  PubMed  CAS  Google Scholar 

  • Tomaselli S, Megiorni F, De Bernardo C et al (2008) Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat 29(2):220–226

    Article  PubMed  Google Scholar 

  • Tomizuka K, Horikoshi K, Kitada R et al (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17(9):1278–1291

    Article  PubMed  CAS  Google Scholar 

  • Uhlenhaut NH, Jakob S, Anlag K et al (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142

    Article  PubMed  CAS  Google Scholar 

  • Vainio S, Heikkila M, Kispert A et al (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397(6718):405–409

    Article  PubMed  CAS  Google Scholar 

  • Val P, Swain A (2010) Gene dosage effects and transcriptional regulation of early mammalian adrenal cortex development. Mol Cell Endocrinol 323(1):105–114

    Article  PubMed  CAS  Google Scholar 

  • Vidal VP, Chaboissier MC, de Rooij DG et al (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28(3):216–217

    Article  PubMed  CAS  Google Scholar 

  • Wagner T, Wirth J, Meyer J et al (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79(6):1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm D, Englert C (2002) The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev 16(14):1839–1851

    Article  PubMed  CAS  Google Scholar 

  • Yu RN, Ito M, Saunders TL et al (1998) Role of Ahch in gonadal development and gametogenesis. Nat Genet 20(4):353–357

    Article  PubMed  CAS  Google Scholar 

  • Zanaria E, Muscatelli F, Bardoni B et al (1994) An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372(6507):635–641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Sinclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

White, S., Sinclair, A. (2012). The Molecular Basis of Gonadal Development and Disorders of Sex Development. In: Hutson, J., Warne, G., Grover, S. (eds) Disorders of Sex Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22964-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22964-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22963-3

  • Online ISBN: 978-3-642-22964-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics