Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

In this paper we present a model for the carpet cutting problem in which carpet shapes are cut from a rectangular carpet roll with a fixed width and sufficiently long length. Our exact solution approaches decompose the problem into smaller parts and minimise the needed carpet roll length for each part separately. The customers requirements are to produce a cutting solution of the carpet within 3 minutes, in order to be usable during the quotation process for estimating the amount of carpet required. Our system can find and prove the optimal solution for 106 of the 150 real-world instances provided by the customer, and find high quality solutions to the remainder within this time limit. In contrast the existing solution developed some years ago finds (but does not prove) optimal solutions for 30 instances. Our solutions reduce the wastage by more than 35% on average compared to the existing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Math. Comput. Model. 17(7), 57–73 (1993)

    Article  Google Scholar 

  2. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geometrical constraint kernel in space and time for handling polymorphic k-dimensional objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the non-overlapping rectangles constraint. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 377–391. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint in the context of non-overlapping rectangles. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 21–35. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Fekete, S.P., Schepers, J., van der Veen, J.C.: An exact algorithm for higher-dimensional orthogonal packing. Oper. Res. 55(3), 569–587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. George, A.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur. J. Oper. Res. 83(1), 39–56 (1995)

    Article  MATH  Google Scholar 

  8. Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use in cumulative problems. C. R. Acad. Sci., Paris, Sér. I, Math. 294(2), 209–211 (1982)

    Google Scholar 

  9. Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. Eur. J. Oper. Res. 141(2), 241–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete Appl. Math. 28(1), 59–70 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing problem. Manage. Sci. 44(3), 388–399 (1998)

    Article  MATH  Google Scholar 

  12. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: DAC 2001, pp. 530–535 (2001)

    Google Scholar 

  13. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pearson, C., Birtwistle, M., Verden, A.R.: Reducing material wastage in the carpet industry. In: PAP 1998, pp. 101–112 (1998)

    Google Scholar 

  15. Pearson, C., Birtwistle, M., Verden, A.R.: Reducing material wastage in the carpet industry. In: INAP 1998, pp. 88–99 (1998)

    Google Scholar 

  16. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS J. Comput. 19(1), 36–51 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schulte, C., Tack, G.: Views iterators for generic constraint implementations. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg (2005), doi:10.1007/11564751_71

    Chapter  Google Scholar 

  18. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource constrained project scheduling problem with generalized precedences by lazy clause generation (September 2010), http://arxiv.org/abs/1009.0347

  19. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Stuckey, P.J., de la Banda, M.G., Maher, M.J., Marriott, K., Slaney, J.K., Somogyi, Z., Wallace, M., Walsh, T.: The G12 project: Mapping solver independent models to efficient solutions. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 9–13. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Wäscher, G., Haußner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schutt, A., Stuckey, P.J., Verden, A.R. (2011). Optimal Carpet Cutting. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics