Skip to main content

Chemical Composition of Different Hair Types

  • Chapter
  • First Online:
Chemical and Physical Behavior of Human Hair

Abstract

Human hair consists of proteins, lipids, water, trace elements and pigments. The composition of the first four of these components is the focus of this Chapter. About two decades ago the emphasis on the proteins of hair was on its amino acid constituents which provided important information on the relative amounts of different functional groups in different types of hair and in different regions of the fiber. However, as a result of advances in the characterization and classification of the different proteins and genes of keratins and keratin associated proteins the focus today is on the proteins themselves. Several important new contributions to the composition of the surface layers of hair and the proteins of the cell membrane complex have been and are continuing and therefore are summarized in this Chapter. The current state of changes in the amino acids, proteins and lipids of hair by morphological region (including KAP and keratin proteins and where they reside), chemical and sunlight damage, diet, puberty and menopause, and other factors have been and are being made and are summarized here. An expanded section on metals in hair, where in the fiber these metals reside and the functional groups that they bind to and their effects on hair chemistry, toxicity and disorders are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers GE (2004) Hair follicle differentiation and regulation. Int J Dev Biol 48:163–170

    Article  PubMed  CAS  Google Scholar 

  2. Zahn H et al (1963) Anwendung schwefelchemischer analysen-methoden auf dauergewelltes haar. J Soc Cosmet Chem 14:529–543

    CAS  Google Scholar 

  3. Stein H, Guarnaccio J (1960) The determination of sulfhydryl groups in reduced hair keratin. Anal Chem Acta 23:89

    CAS  Google Scholar 

  4. Leach SJ (1960) The reaction of thiol and disulfide groups with mercuric chloride and methyl mercuric iodide in fibrous proteins. Austral J Chem 13:547–566

    Article  CAS  Google Scholar 

  5. Robbins CR (1967) Infrared analysis of oxidized keratins. Text Res J 37:811–813

    Article  CAS  Google Scholar 

  6. Robbins CR, Bahl M (1984) Analysis of hair by electron spectroscopy for chemical analysis. J Soc Cosmet Chem 35:379–390

    CAS  Google Scholar 

  7. Block RJ, Bolling D (1952) The amino acid composition of proteins and foods. Charles C. Thomas, Springfield, IL

    Google Scholar 

  8. McMullen R, Jachowicz J (1998) Thermal degradation of hair. I: effect of curling irons. J Cosmet Sci 49:223–244

    Google Scholar 

  9. Moore H et al (1958) Chromatography of amino acids on sulfonated polystyrene resins: improved system. Anal Chem 30:1185–1190

    Article  CAS  Google Scholar 

  10. Sagal J Jr (1965) Acid and base binding behavior of white and pigmented human hair. Text Res J 35:672–673

    CAS  Google Scholar 

  11. Robbins CR, Kelly CH (1969) Amino acid analysis of cosmetically altered hair. J Soc Cosmet Chem 20:555–564

    CAS  Google Scholar 

  12. Corfield MC, Robson A (1955) The amino acid composition of wool. Biochem J 59:62–68

    PubMed  CAS  Google Scholar 

  13. Robbins CR, Kelly CH (1970) Amino acid composition of human hair. Text Res J 40:891–896

    Article  CAS  Google Scholar 

  14. Ward WH, Lundgren HP (1955) The formation composition and properties of the keratins, In: Advances in protein chemistry, vol 9, and references therein. Academic Press, New York

    Google Scholar 

  15. Clay RC, Cook K, Routh JI (1940) Studies in the composition of human hair. J Am Chem Soc 62:2709–2710

    Article  CAS  Google Scholar 

  16. Simmonds DH (1958) The amino acid composition of keratins. Part V: a comparison of the chemical composition of merino wools of differing crimp with that of other animal fibers. Text Res J 28:314–317

    Article  CAS  Google Scholar 

  17. Bradbury JH et al (1966) Separation of chemically unmodified histological components of keratin fibers and analyses of cuticle. Nature 210:1333–1334

    Article  CAS  Google Scholar 

  18. Lang J, Lucas C (1952) Analysis of hair keratin. I: application of microbiological techniques to hydrolyzates of human hair. Biochem J 52:84–87

    PubMed  CAS  Google Scholar 

  19. Lustig B, Kondritzer A, Moore J (1945) Fractionation of hair, chemical and physical properties of hair fractions. Arch Biochem 8:51–66

    CAS  Google Scholar 

  20. Block RJ, Bolling D (1939) The composition of keratin. The amino acid composition of hair, wool, horn and other eukeratins. J Biol Chem 128:181–186

    CAS  Google Scholar 

  21. Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides. American Chemical Society Monograph Series. Reinhold Publishing Corp. New York

    Google Scholar 

  22. Schmidt C (1943) The chemistry of amino acids and proteins. Charles C. Thomas, Springfield

    Google Scholar 

  23. Hawk P et al (1965) Hawk’s physiological chemistry. In: Oser BL (ed) Chapters 4, 5, and 6. McGraw-Hill, New York

    Google Scholar 

  24. Graham CE et al (1949) The amino acid content of some scleroproteins. J Biol Chem 177:529–532

    PubMed  CAS  Google Scholar 

  25. Menkart J, Wolfram LJ, Mao I (1966) Caucasian hair, Negro hair and wool: similarities and differences. J Soc Cosmet Chem 17:769–788

    CAS  Google Scholar 

  26. Vickery HB, Leavenworth CS (1929) The separation of cystine from histidine: the basic amino acids of human hair. J Biol Chem 83:523–534

    CAS  Google Scholar 

  27. Beveridge JMR, Lucas C (1944) The analysis of hair keratin. 2: the dicarboxylic and basic amino acids of human hair. Biochem J 38:88–95

    PubMed  CAS  Google Scholar 

  28. Cannan RK, Levy M (1950) The chemistry of amino acids and proteins. Ann Rev Biochem 19:125–148

    Article  PubMed  CAS  Google Scholar 

  29. Marshall RC, Gillespie JM (1990) Proceedings of the 8th international wool textile research conference, vol I. Wool Research Organisation of New Zealand, Christchurch, NZ, pp 256–265

    Google Scholar 

  30. Shinohara K (1937) The determination of thiol and disulfide compounds with special reference to cysteine and cystine. J Biol Chem 120:743–749

    CAS  Google Scholar 

  31. Ogura R et al (1962) The concentration of sulfhydryl and disulfide in human epidermis, hair and nails. J Invest Dermatol 38:69–76

    PubMed  CAS  Google Scholar 

  32. Wolfram LJ (1981) The reactivity of human hair: A review, In: Orfanos C, Montagna W, Stuttgen G (eds) Hair research. Springer, Berlin, p 491

    Google Scholar 

  33. Veldsman DP (1966) Weathering in wool. Part 3: the chemical effects of weathering. Wool Sci Rev 29:33–44

    Google Scholar 

  34. Robbins CR et al (1968) A study of the causes of variation in the acid dye combining capacity of human hair. Text Res J 38:1130

    Article  CAS  Google Scholar 

  35. Strasheim A, Buijs K (1961) An infra-red study of the oxidation of the disulphide bond in wool. Biochim Biophys Acta 47:538–541

    Article  CAS  Google Scholar 

  36. Louw D (1960) Weathering and the resulting chemical changes in some South African Merino wools. Text Res J 30:462–468

    Article  CAS  Google Scholar 

  37. Harris M, Smith A (1938) Photochemical reactions of wool. J Res Natl Bur Stand 20:563–569

    CAS  Google Scholar 

  38. Hoting E, Zimmerman M (1997) Sunlight induced modification in bleached, permed or dyed human hair. J Cosmet Sci 48:79–91

    Google Scholar 

  39. Holt LA, Milligan B (1977) The formation of carbonyl groups during irradiation of wool and its relevance to photoyellowing. Text Res J 47:620

    CAS  Google Scholar 

  40. Dubief C (1992) Experiments with hair photodegradation. Cosmet Toiletries 107:95–102

    CAS  Google Scholar 

  41. Dean RT et al (1997) Biochemistry and pathology of radical mediated protein oxidation. Biochem J 324:1–18

    PubMed  CAS  Google Scholar 

  42. Kenney D (1981) X-ray diffraction studies of ancient hairs. Cosmet Toiletries 96:121–122

    CAS  Google Scholar 

  43. Furman OS, Teel AL, Watts RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428

    Article  PubMed  CAS  Google Scholar 

  44. Zahn H (1966) Chemische vorgange beim bleichen von wolle und menschenhaar mit wasserstoffperoxid und peroxysauren. J Soc Cosmet Chem 17:687–701

    CAS  Google Scholar 

  45. Inglis AS, Leaver IH (1967) Some effects of peroxide oxidation of wool. Text Res J 36:995–997

    Article  Google Scholar 

  46. Maclaren JA et al (1960) A study of some problems in protein chemistry using new (non-hydrolytic) methods for determination of thiol and disulfide. J Text Inst 51:T665–T667

    Article  Google Scholar 

  47. Sweetman BJ et al (1965) A study of the partial oxidation of the disulfide groups in wool. In: Proceedings of the 3rd international textile research conference, vol II. Paris, pp 62–71

    Google Scholar 

  48. Maclaren JA (1965) Disulfide monoxide groups in oxidized proteins. Aust J Chem 18:1655–1665

    Article  CAS  Google Scholar 

  49. Zahn H et al (1984) Proceedings of 4th international hair science symposium, Syburg

    Google Scholar 

  50. Nachtigal J, Robbins C (1970) Intermediate oxidation products of cystine in oxidized hair. Text Res J 40:454–457

    Article  CAS  Google Scholar 

  51. Stein H, Guarnaccio J (1959) Infrared study of oxidized keratin. Text Res J 29:492–496

    Article  CAS  Google Scholar 

  52. Harris M, Smith A (1937) State of the sulfur in oxidized wool. J Res Natl Bur Stand 18:623–628

    CAS  Google Scholar 

  53. Danehy JP (1966) Organic Disulfides, In: Kharasch N, Meyers CY (eds) The chemistry of organic sulfur compounds, vol 2. Pergamon Press, New York, p. 337

    Google Scholar 

  54. Zuber H, Traumann K, Zahn H (1955) Proceedings of international wool textile research conference, vol C. Australia, p 127

    Google Scholar 

  55. Zahn H, Kunitz F-W et al (1960) Proceedings of 2nd international wool textile research conference, England, J Text Inst 51:T740

    Google Scholar 

  56. Chao J et al (1979) Comparison of the effects of some reactive chemicals on the proteins of whole hair, cuticle and cortex. J Soc Cosmet Chem 30:401–413

    CAS  Google Scholar 

  57. Steinhardt J, Harris M (1940) Combination of wool protein with acid and base: hydrochloric acid and potassium hydroxide. J Res Natl Bur Stand 24:335–367

    CAS  Google Scholar 

  58. Speakman JB, Elliot GH (1946) Symposium on fibrous proteins, vol 116. Soc Dyers Col, Leeds

    Google Scholar 

  59. Maclaren JA (1960) The estimation of basic groups in wool by dye uptake measurements. Arch Biochem Biophys 86:175–178

    Article  PubMed  CAS  Google Scholar 

  60. Breuer M (1964) Binding of phenols by hair. J Phys Chem 68:2067–2073

    Article  CAS  Google Scholar 

  61. Leon NH (1972) Structural aspects of keratin fibers. J Soc Cosmet Chem 23:427–445

    Google Scholar 

  62. Otsuka H, Nemoto T (1988) Study on Japanese hair, Koshokashi. J Cosmet Assoc (Japan) 12:192–197

    Google Scholar 

  63. Courtois M et al (1995) Ageing and hair cycles. Br J Dermatol 132:86–93

    Article  PubMed  CAS  Google Scholar 

  64. Robbins CR, Dawson TL Jr What women want – a new more perception-relevant model of scalp hair: hair “amount”. Variation in scalp hair diameter and density with age in Caucasian women. Br J Dermatol (in press)

    Google Scholar 

  65. Trotter M, Dawson HL (1934) The hair of French Canadians. Am J Phys Anthropol 18:443–456

    Article  Google Scholar 

  66. Hollfelder B et al (1995) Chemical and physical properties of pigmented and non-pigmented hair (gray hair). Int J Cosmet Sci 17:87–89

    Article  PubMed  CAS  Google Scholar 

  67. Van Neste D (2004) Thickness, medullation and growth rate of female scalp hair are subject to significant variation according to pigmentation and scalp location during ageing. Eur J Dermatol 14:28–32

    PubMed  Google Scholar 

  68. Gao T, Bedell A (2001) Ultraviolet damage on natural gray hair and its photoprotection. J Cosmet Sci 52:103–118

    PubMed  CAS  Google Scholar 

  69. Wolfram L, Lindemann M (1971) Some observations on the hair cuticle. J Soc Cosmet Chem 22:839–850

    CAS  Google Scholar 

  70. Swift J, Bews B (1974) The chemistry of human hair cuticle. I: a new method for physical isolation of cuticle. J Soc Cosmet Chem 25:13–21

    CAS  Google Scholar 

  71. Rogers GE (1959) Electron microscope studies of hair and wool. Ann N Y Acad Sci 83:378–399

    Article  PubMed  CAS  Google Scholar 

  72. Swift JA, Bews B (1976) The chemistry of human hair cuticle. III: the isolation and amino acid analysis of various sub-fractions of the cuticle obtained by pronase and trypsin digestion. J Soc Cosmet Chem 27:289–300

    CAS  Google Scholar 

  73. Swift JA (1979) Minimum depth electron probe X-ray microanalysis as a means for determining the sulfur content of the human hair surface. Scanning 2:83–88

    Article  CAS  Google Scholar 

  74. Steinert PM, Marekov LN (1997) Direct evidence that involucrin is a major early isopeptide cross-linked component of the keratinocyte cornified cell envelope. J Biol Chem 272:2021–2030

    Article  PubMed  CAS  Google Scholar 

  75. Rice RH, Wong VJ, Pinkerton KE (1994) Ultrastructural visualization of cross-linked protein features in epidermal appendages. J Cell Sci 107:1985–1992

    PubMed  CAS  Google Scholar 

  76. Bringans SD et al (2007) Characterization of the exocuticle A-layer proteins of wool. Exp Dermatol 16:951–960

    Article  PubMed  CAS  Google Scholar 

  77. Zahn H, Messenger H, Hocker H (1994) Covalently linked fatty acids at the surface of wool: part of the cuticle cell envelope. Text Res J 64:554–555

    Article  CAS  Google Scholar 

  78. Bradbury JH, Ley KF (1972) The chemical composition of wool. XI: separation and analysis of exocuticle and endocuticle. Aust J Biol Sci 25:1235–1247

    PubMed  CAS  Google Scholar 

  79. Swift JA (1999) Human hair cuticle: biologically conspired to the owner’s advantage. J Cosmet Sci 50:23–47

    Google Scholar 

  80. Rogers M et al (2004) Hair keratin associated proteins: characterization of a second high sulfur KAP gene domain on chromosome 21. J Invest Dermatol 122:147–158

    Article  PubMed  CAS  Google Scholar 

  81. Roper K et al (1984) Morphological composition of the cuticle from chemically treated wool: part I: calculating endocuticle content in isolated cuticle from the results of amino acid analysis. Text Res J 55:139–143

    Article  Google Scholar 

  82. Bryson W et al (1995) Characterization of proteins obtained from papain/DTT digestion of Merino and Romney wool. In: Proceedings of 9th international wool textile research conference, Biella, pp 463–473

    Google Scholar 

  83. Fraser RDB, MacRae TP, Rogers GE (1972) Alpha-Helical Structure, In: Kugdmass IN (ed) Keratins their composition, structure and biosynthesis. Thomas, Springfield, pp 70–75

    Google Scholar 

  84. VonAllworden K (1916) Die eigenschaften der schafwolle und eine neue untersuchungs method zum nachweis geschadigter wolle auf chemischem wege. Z Angew Chem 29:77–78

    Article  CAS  Google Scholar 

  85. Allen C et al (1985) Evidence for lipids and filamentous protein in Allworden membranes. In: Proceedings of 7th international wool textile research conference, vol I. Tokyo, pp 143–151

    Google Scholar 

  86. Bradbury JH, Leeder JD, Watt IC (1971) The cell membrane complex of wool. Appl Polym Symp 18:227–236

    Google Scholar 

  87. Negri AP, Cornell HJ, Rivett DE (1993) A model for the surface of keratin fibers. Text Res J 63:109–115

    Article  CAS  Google Scholar 

  88. Zahn H, Wortmann FJ, Hocker H (2005) Considerations on the occurrence of loricrin and involucrin in the cell envelope of wool cuticle cells. Int J Sheep Wool Sci 53:1–13

    Google Scholar 

  89. Hohl D et al (1991) Characterization of human loricrin, structure and function of a new class of epidermal cell envelope proteins. J Biol Chem 266:6626–6636

    PubMed  CAS  Google Scholar 

  90. Eckert RL, Green H (1986) Structure and evolution of the human involucrin gene. Cell 46:583–589

    Article  PubMed  CAS  Google Scholar 

  91. Marvin KW et al (1992) Cornifin a cross linked envelope precursor in keratinocytes that is down-regulated by retinoids. Proc Natl Acad Sci USA 89:11026–11030

    Article  PubMed  CAS  Google Scholar 

  92. Tezuka T, Takahashi M (1987) The cystine rich envelope protein from human epidermal stratum corneum cells. J Invest Dermatol 88(1):47–51

    Article  PubMed  CAS  Google Scholar 

  93. Swift JA, Smith JR (2001) Microscopical investigations on the epicuticle of mammalian keratin fibers. J Microsc 204:201–211

    Article  Google Scholar 

  94. Steinert PM, Marekov LN (1995) The proteins elafin, filaggrin, keratin intermediate filaments, loricrin and small proline-rich proteins1 and 2 are isodipeptide cross linked components of the human epidermal cornified cell envelope. J Biol Chem 270:17702–17711

    Article  PubMed  CAS  Google Scholar 

  95. Rogers GE, Koike K (2009) Laser capture microscopy in a study of expression of structural proteins in the cuticle cells of human hair. Exp Dermatol 18:541–547

    Article  PubMed  CAS  Google Scholar 

  96. Zahn H et al (1980) Wool as a biological composite structure. Ind Eng Chem Prod Res Dev 19:496–501

    Article  CAS  Google Scholar 

  97. Alexander P, Earland C (1950) Structure of wool fibers: isolation of an alpha and beta protein in wool. Nature 166:396

    Article  PubMed  CAS  Google Scholar 

  98. Wolfram LJ, Milligan B (1975) Keratose fractions from wool fiber. In: Proceedings of 5th international wool textile research conference, vol 3. Aachen, p 242

    Google Scholar 

  99. Wortmann FJ, Greven R, Zahn H (1982) A method for isolating the cortex of keratin fibers. Text Res J 52:479–481

    Article  CAS  Google Scholar 

  100. Leeder JD, Marshall RC (1982) Readily extracted proteins from Merino wool. Text Res J 52:245–249

    Article  CAS  Google Scholar 

  101. Naito S, Takahashi K, Arai K (1990) Proceedings of 8th international wool textile research conference, vol I. Christchurch, pp 276–285

    Google Scholar 

  102. Logan RI et al (1989) Analysis of the intercellular and membrane lipids of wool and other animal fibers. Text Res J 59:109–113

    Article  CAS  Google Scholar 

  103. Mansour MP, Jones LN (1989) Morphological changes in wool after solvent extraction and treatments in hot aqueous solutions. Text Res J 59:530–535

    Article  CAS  Google Scholar 

  104. Swift AJ, Holmes J (1965) Degradation of human hair by papain. III: some electron microscope observations. Text Res J 35:1014–1019

    Article  CAS  Google Scholar 

  105. Jurdana LE, Leaver IH (1992) Characterization of the surface of wool and hair using microscopical and fluorescence probe techniques. Polym Int 27:197–206

    Article  CAS  Google Scholar 

  106. Peet DJ (1992) A comparative study of covalently-bound fatty acids in keratinized tissues. Comp Biochem Physiol 102B(2):363–366

    CAS  Google Scholar 

  107. Mazukawa Y, Narita H, Imokawa G (2005) Characterization of the lipid composition at the proximal root regions of human hair. J Cosmet Chem 56:1–16

    Google Scholar 

  108. Inoue T et al (2007) Structural analysis of the cell membrane complex in the human hair cuticle using microbeam X-ray diffraction: relationship with the effects of hair dyeing. J Cosmet Sci 58:11–17

    PubMed  CAS  Google Scholar 

  109. Leeder JD et al (1985) Use of the transmission electron microscope to study dyeing and diffusion processes. In: Proceedings of 7th international wool textile research conference, vol V. Tokyo, pp 99–108

    Google Scholar 

  110. Leeder JD (1969) The resistant membranes of keratin fibers. Masters Thesis, Australian National University

    Google Scholar 

  111. Wertz PW, Downing DT (1988) Integral lipids of human hair. Lipids 23:878–881

    Article  PubMed  CAS  Google Scholar 

  112. Korner A, Petrovic S, Hocker H (1995) Cell membrane lipids of wool and human hair form liposomes. Text Res J 65:56–58

    Article  Google Scholar 

  113. Robbins C (2002) Chemical and physical behavior of human hair, 4th edn. Springer Verlag, New York, p 91

    Google Scholar 

  114. Evans DJ, Lanczki M (1997) Cleavage of integral surface lipids of wool by aminolysis. Text Res J 67:435–444

    CAS  Google Scholar 

  115. Wertz PW, Downing DT (1989) Integral lipids of mammalian hair. Comp Biochem Physiol B Comp Biochem 92B:759–761

    Article  CAS  Google Scholar 

  116. Negri AP, Cornell HJ, Rivett DE (1991) The nature of covalently bound fatty acids in wool fibers. Aust J Agric Res 42:12851292

    Article  Google Scholar 

  117. Weitkamp AW et al (1947) The free fatty acids of human hair fat. J Am Chem Soc 69:1936–1939

    Article  PubMed  CAS  Google Scholar 

  118. Logan RI et al (1990) Morphological changes in wool fibers after solvent extraction. In: Proceedings of 8th international wool textile research conference, vol I. Christchurch, pp 408–418

    Google Scholar 

  119. Korner A, Wortmann G (2005) Isolation of 18-MEA containing proteolipids from wool fiber cuticle. In: Proceedings of 32nd Aachen textile conference, 23–24 Nov 2005

    Google Scholar 

  120. Kalkbrenner U et al (1990) Studies on the composition of the wool cuticle. In: Proceedings of 8th international wool textile research conference, vol I. Christchurch, pp 398–407

    Google Scholar 

  121. Jones LN et al (1996) Hair from patients with maple syrup urine disease show a structural defect in the fiber cuticle. J Invest Dermatol 106:461–464

    Article  PubMed  CAS  Google Scholar 

  122. Harper P (1989) Maple syrup urine disease in calves: a clinical, pathological and biochemical study. Aust Vet J 66:46–49

    Article  PubMed  CAS  Google Scholar 

  123. Leeder JD, Bishop W, Jones LN (1983) Integral lipids of wool fibers. Text Res J 53:402–407

    Article  CAS  Google Scholar 

  124. Schwan A, Zahn H (1980) Investigations of the cell membrane complexes in wool and hair. In: Proceedings of 6th international wool textile research conference, vol 2. Pretoria, pp 29–41

    Google Scholar 

  125. Rivett DE (1991) Structural lipids of the wool fiber. Wool Sci Rev 67:1–25

    Google Scholar 

  126. Wertz PW et al (1986) Preparation of liposomes from stratum corneum lipids. J Invest Dermatol 87:582–584

    Article  PubMed  CAS  Google Scholar 

  127. Shaw DA (1979) Hair lipid and surfactants. Extraction of lipid by surfactants and lack of shampooing on the rate of refatting of hair. Int J Cosmet Sci 1:317–328

    Article  PubMed  CAS  Google Scholar 

  128. Natarajan U, Robbins CR (2010) The thickness of 18-MEA on an ultra-high sulfur protein surface by molecular modeling. Text Res J 61(6) (in press)

    Google Scholar 

  129. Capablanca JS, Watt IC (1986) Factors affecting the zeta potential at wool fiber surfaces. Text Res J 56:49–55

    Article  CAS  Google Scholar 

  130. Nishimura K et al (1989) Interrelationship between the hair lipids and hair moisture. Nippon Koshohin Kagakkaishi 13:134–139

    CAS  Google Scholar 

  131. Ward RJ et al (1993) Surface analysis by X-ray photoelectron spectroscopy and static ion mass spectrometry. Text Res J 63:362–368

    Article  CAS  Google Scholar 

  132. Carr CM, Leaver IH, Hughes A (1986) X-ray photoelectron spectroscopic study of the wool fiber surface. Text Res J 56:457–461

    Article  CAS  Google Scholar 

  133. Rivett DE et al (1985) Proceedings of 7th international wool textile research conference, Tokyo, pp 135–142

    Google Scholar 

  134. St John HAW, George GA (1996) Response to determining the lipid layer thickness on wool fiber surfaces using XPS. Text Res J 66:122

    Article  Google Scholar 

  135. Andrews JC, deBeer EJ (1928) Optical isomers of cystine and their isoelectric solubilities. J Phys Chem 32:1031–1039

    Article  CAS  Google Scholar 

  136. Lustig B, Kondritzer A, Moore D (1945) Fractionation of hair, chemical physical properties of the hair fractions. Arch Biochem 8:57–66

    CAS  Google Scholar 

  137. Hussler G et al (1995) Isolation and identification of human hair ceramides. Int J Cosmet Sci 17:197–206

    Article  PubMed  CAS  Google Scholar 

  138. Nicolaides N, Rothman S (1953) Studies on the chemical composition of human hair fat. J Invest Dermatol 21:9–14

    PubMed  CAS  Google Scholar 

  139. Kligman AM, Shelly WB (1958) An investigation of the biology of the human sebaceous gland. J Invest Dermatol 30:99–125

    PubMed  CAS  Google Scholar 

  140. Strauss J, Pochi P (1963) The Hormonal Control of Human Sebaceous Glands, In: Advances in biology of skin, The sebaceous glands, vol 4. Pergamon Press, New York, pp 220–254

    Google Scholar 

  141. Pochi PE, Strauss JS (1979) Age related changes in sebaceous gland activity, J Invest Dermatol 73:108–111

    Article  PubMed  CAS  Google Scholar 

  142. Koyanagi T, Takanohashi T (1961) Cystine content in hair of children as influenced by vitamin A and animal protein in diet. Nature 192:457–458

    Article  PubMed  CAS  Google Scholar 

  143. Leeder JD, Rippon JA (1982) Histological differentiation of wool fibers in formic acid. J Text Inst 73:149–151

    Article  CAS  Google Scholar 

  144. Koch J et al (1982) Hair lipids and their contribution to the perception of hair oiliness: part I: surface and internal lipids in hair. J Soc Cosmet Chem 33:317–326

    CAS  Google Scholar 

  145. Gloor M (1978) Determination and Analysis of Sebum on Skin and Hairs, In: Breuer M (ed) Cosmetic sciences, vol 1. Academic Press, New York, p 218

    Google Scholar 

  146. Nicolaides N, Foster RC Jr (1956) Esters in human hair fat. J Am Oil Chem Soc 33:404–409

    Article  CAS  Google Scholar 

  147. Gershbein LL, Metcalf LD (1966) Gas chromatographic analysis of fatty acids of human hair lipids. J Invest Dermatol 46:477–479

    CAS  Google Scholar 

  148. Flesch P (1955) Hair Growth, In: Rothman (ed) Physiology and biochemistry of the skin. University of Chicago Press, Chicago, USA, p 624

    Google Scholar 

  149. Gershbein L, O’Neill HJ (1966) Alcoholic components of human hair and scalp lipids. J Invest Dermatol 47:16–21

    Article  CAS  Google Scholar 

  150. Brown RA, Young WS, Nicolaides N (1954) Analysis of high molecular weight alcohols by the mass spectrometer: wax alcohols of human hair fat. Anal Chem 26:1653

    Article  CAS  Google Scholar 

  151. Nicolaides N, Rothman S (1952) Studies on the chemical composition of human hair fat. J Invest Dermatol 19:389–391

    PubMed  CAS  Google Scholar 

  152. Kreplak L et al (2001) Profiling lipids across Caucasian and Afro-American hair transverse cuts, using synchrotron infrared micro-spectrometry. Int J Cosmet Sci 23:369–374

    Article  PubMed  CAS  Google Scholar 

  153. Singh EJ, Gershbein LL, O’Neil HJ (1967) Separation of alcohols of human hair lipids by thin layer and gas chromatography. J Invest Dermatol 48:96

    PubMed  CAS  Google Scholar 

  154. Bereston ES (1954) Use of selenium sulfide shampoo in seborrheic dermatitis. JAMA 156:1246–1247

    Article  CAS  Google Scholar 

  155. Knott CA et al (1983) In vivo procedures for assessment of hair greasiness. Int J Cosmet Sci 5:77

    Article  PubMed  CAS  Google Scholar 

  156. Pierard-Franchimont C, Arrese JE, Pierard GE (1997) Sebum flow mechanics and antidandruff shampoos. J Soc Cosmet Chem 48:117–121

    Google Scholar 

  157. Robbins CR, Reich C (1984) Proceedings of 4th international hair science symposium, Syburg

    Google Scholar 

  158. Bore P et al (1980) Differential thermal analysis of human sebum as a new approach to rheological behavior. Int J Cosmet Sci 2:177–191

    Article  PubMed  CAS  Google Scholar 

  159. Scott GV, Robbins C (1980) Effects of surfactant solutions on hair fiber friction. J Soc Cosmet Chem 31:179–200

    CAS  Google Scholar 

  160. Wills T et al (2004) Free internal lipids in hair from pre- and post-menopausal women. IFSCC Mag 7(4):293–297

    Google Scholar 

  161. Pochi PE, Strauss JS (1974) Endochrinologic control of the development and activity of the human sebaceous gland J Invest Dermatol 62:191–201

    CAS  Google Scholar 

  162. Mirmirani P, Dawson TL et al (2010) Hair growth, parameters in pre- and post menopausal women. In: Treub R, Tobin D (eds) Hair aging. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  163. Robbins C, Reich C (1986) Prediction of hair assembly characteristics from single fiber properties: part II: the relationship of curvature, friction, stiffness and diameter to combing behavior. J Soc Cosmet Chem 37:141–158

    Google Scholar 

  164. Rogers GE (1964) Structural and Biochemical features of the Hair Follicle, In: Montagna W, Lobitz WC (eds) The epidermis. Academic Press, New York, p 202

    Google Scholar 

  165. Blackburn S (1948) The composition and reactivity of medullated keratins. Biochem J 43:114–117

    CAS  Google Scholar 

  166. Langbein L et al (2010) The keratins of the human beard hair medulla: the riddle in the middle. J Invest Dermatol 130:55–73

    Article  PubMed  CAS  Google Scholar 

  167. Kerr MF, Godin C (1959) The N- and C-terminal end groups of hair keratin. Can J Chem 37:11–12

    Article  CAS  Google Scholar 

  168. Sanger F (1945) The free amino groups of insulin. Biochem J 39:507–515

    CAS  Google Scholar 

  169. Speakman JB, Elliott GH (1946) The combination of wool with acids and acid dyes. In: Symposium on fibrous proteins of dyers and colourists, vol V. Leeds, p 116

    Google Scholar 

  170. Hahnel R (1959) Comparative chemical studies of physiological and pathological keratins. I: quantitative determination of N-terminal amino acids in calluses, psoriasis scales, nails and hair. Arcj Klin U Exp Dermatol 209:97

    Article  CAS  Google Scholar 

  171. Niu C, Fraenkel-Conrat H (1955) Determination of C-terminal amino acids and peptides by hydrazinolysis. J Am Chem Soc 77:5882–5885

    Article  CAS  Google Scholar 

  172. Bradbury JH (1958) The hydrazinolysis of insulin, lysozyme, wool proteins and wool. Biochem J 68:482–486

    PubMed  CAS  Google Scholar 

  173. Gillespie JM, Lennox FG (1953) Preparation of an electrophoretically homogeneous keratin derivative from wool. Biochim Biophys Acta 12:481–482

    Article  PubMed  CAS  Google Scholar 

  174. Crewther WG et al (1965) Proceedings of 3rd international wool textile research conference, vol I. Paris, p 303

    Google Scholar 

  175. Crewther WG et al (1965) The Chemistry of Keratins, Adv Protein Chem 20:191 and references therein, p 191–346

    Google Scholar 

  176. Crewther WG et al (1983) Structure of intermediate filaments. Int J Biol Macromol 5:267–274

    Article  CAS  Google Scholar 

  177. Gillespie JM (1965) The High Sulfur Proteins of Normal and Aberrant Keratins, In: Lynne AG, Short BF (eds) Biology of the skin and hair growth. Angus and Robertson, Sydney

    Google Scholar 

  178. Corfield MC et al (1965) Proceedings of 3rd international textile research conference, vol I. Paris, p 205 and references therein

    Google Scholar 

  179. Cole M et al (1965) Proceedings of 3rd international textile research conference, vol I. Paris, p 196, and references therein

    Google Scholar 

  180. Fraser R et al (1972) Alpha Helical Structure, In: Keratins, their composition, structure and biosynthesis, Chapters 2 and 3. C.C. Thomas, Springfield

    Google Scholar 

  181. Fraser RBD et al (1988) Disulfide bonding in alpha-keratin. Int J Biol Macromol 10:106–112

    Article  CAS  Google Scholar 

  182. Rogers GE, Reis PJ, Ward KA, Marshall RC (1989) The biology of wool and hair. Chapman & Hall, London/New York

    Google Scholar 

  183. Swift JA (1997) Morphology and histochemistry of human hair. In: Jolles P, Zahn H, Hocker H (eds) Formation and structure of human hair. Birkhauser Verlag, Switzerland, pp 149–175

    Google Scholar 

  184. Powell B, Rogers GE (1997) The role of keratin proteins and their genes in the growth, structure and properties of hair. In: Jolles P, Zahn H, Hocker H (eds) Formation & structure of human hair. Birkhauser Verlag, Basel, pp 59–148

    Google Scholar 

  185. Langbein L et al (1999) The catalog of human hair keratin. I: expression of the nine type I members in the hair follicle. J Biol Chem 274:19874–19884

    Article  PubMed  CAS  Google Scholar 

  186. Langbein L et al (2001) The catalog of human hair keratins. II: expression of the six type II members in the hair follicle and the combined catalog of human type I and II keratins. J Biol Chem 276:35123–35132

    Article  PubMed  CAS  Google Scholar 

  187. Rogers MA, Langbein L et al (2006) Human hair keratin associated proteins (KAPs). Int Rev Cytol 251:209–263

    Article  PubMed  CAS  Google Scholar 

  188. Jenkins BJ, Powell BC (1994) Differential expression of genes encoding a cysteine rich keratin family in the hair cuticle. J Invest Dermatol 103:310–317

    Article  PubMed  CAS  Google Scholar 

  189. Langbein L, Schweitzer J (2005) Keratins of the human hair follicle. Int Rev Cytol 243:1–78

    Article  PubMed  CAS  Google Scholar 

  190. Steinert PM, Jones JC, Goldman RD (1984) Intermediate filaments. J Cell Biol 99:225–275

    Article  Google Scholar 

  191. Goldman RD, Dessev GN (1989) Intermediate Filaments: Problems and Perspectives, In: Rogers G, Reis P, Ward KA, Marshall RC (eds) The biology of wool & hair. Chapman & Hall, London/New York, pp 87–95

    Google Scholar 

  192. O’GuinWM et al (1989) Specific Keratins and their Associated Proteins as Markers for Hair Follicle Differentiation, In: Rogers G, Reis P, Ward KA, Marshall RC (eds) The biology of wool & hair. Chapman & Hall, London/New York, pp 37–49

    Google Scholar 

  193. Rogers et al (1989) Specific Biochemical Features of the Hair Follicle, In: Rogers G, Reis P, Ward K, Marshall R (eds) The biology of wool & hair. Chapman & Hall, London/New York, p 69–85

    Google Scholar 

  194. Asquith RS, Watson PA (1965) Changes in amino-nitrogen content of solutions of γ-keratose from wool keratin. Nature 208:786–787

    Article  CAS  Google Scholar 

  195. Corfield MC, Robson A, Skinner B (1958) The amino acid composition of three fractions from oxidized wool. Biochem J 68:348–352

    PubMed  CAS  Google Scholar 

  196. Crounse RG (1965) In: Lynn AG, Short BF (eds) Biology of the skin and hair. Angus and Robertson, Sydney, p 307

    Google Scholar 

  197. Wolfram LJ, Milligan B (1975) Proceedings of 5th international wool textile research conference, vol 3. Aachen, p 242

    Google Scholar 

  198. Campbell ME, Whiteley KJ, Gillespie JM (1975) Influence of nutrition on the crimping rate of wool and the type of constituent proteins. Aust J Biol Sci 28:389–397

    PubMed  CAS  Google Scholar 

  199. Bigwood EJ, Robazza F (1955) Amino acid and sulfur content of the hair of malnourished children. Volding 16:251–256

    CAS  Google Scholar 

  200. Noer A, Garrigues JC (1956) Arginine of blood and tissues in kwashiorkor. Arch Mal App Digest et Maladies Nutr 45:557–560

    Google Scholar 

  201. Gillespie JM, Marshall RC (1980) Proteins of human hair and nail. Cosmet Toiletries 95:29–34

    CAS  Google Scholar 

  202. Marshall RC, Gillespie JM (1989) In: Rogers G, Reis P, Ward KA, Marshall RC (eds) The biology of wool and hair. Chapman & Hall, London/New York, p 117

    Google Scholar 

  203. Gillespie JM (1983) In: Goldsmith LA (ed) Biochemistry and physiology of the skin. Oxford University Press, New York, pp 475–510

    Google Scholar 

  204. Grungreiff K (2002) Zinc in liver disease. J Trace Elem Exp Med 15:67–78

    Article  CAS  Google Scholar 

  205. Method of Test for Determining the solubility of wool in alkali, In IWTO Specifications Red Book, Edition 2010/2011, Published by the IWTO (2010)

    Google Scholar 

  206. Harris M, Smith A (1936) Oxidation of wool: alkali solubility test for determining the extent of oxidation. J Res Natl Bur Stand 17:577

    CAS  Google Scholar 

  207. Oku M, Nishimura H, Kanehisa H (1987) Dissolution of proteins from hair. II. The analysis of proteins dissolved into permanent waving agent and the evaluation of hair damage. J Soc Cosmet Chem Jpn 21:204–209

    Article  CAS  Google Scholar 

  208. Sandhu S, Robbins CR (1993) A simple and sensitive method using protein loss measurements to evaluate surface damage to human hair. J Soc Cosmet Chem 44:163–175

    CAS  Google Scholar 

  209. Inoue T, Ito M, Kizawa K (2002) Labile proteins accumulated in damaged hair upon permanent waving and bleaching treatments. J Cosmet Sci 53:337–344

    PubMed  CAS  Google Scholar 

  210. Ruetsch S, Yang B, Kamath YK (2003) Chemical and photo-oxidative hair damage studied by dye diffusion and electrophoresis. J Cosmet Sci 54:379–394

    PubMed  CAS  Google Scholar 

  211. Sinclair J, Flagler M, Jones L, Rufaut, N, Davis MG The proteomic profile of hair damage. In: 22nd World congress of dermatology, Seoul, Proceedings to be published in the British Journal of Dermatology

    Google Scholar 

  212. Chamberlain N, Speakman JB (1931) Uber hystereseserscheinungen in der wasseraufnahme des menchenhaares. J Electrochem 37:374–375

    CAS  Google Scholar 

  213. Crawford RJ, Robbins CR (1981) A hysteresis in heat dried hair. J Soc Cosmet Chem 32:27–36

    Google Scholar 

  214. Smith S (1947) The sorption of water vapor by high polymers. J Am Chem Soc 69:646–651

    Article  CAS  Google Scholar 

  215. Mellon EF, Korn AH, Hoover SR (1948) Water absorption of proteins: lack of dependence of hysteresis on free amino groups. J Am Chem Soc 70:1144–1146

    Article  PubMed  CAS  Google Scholar 

  216. Leeder JD, Watt IC (1965) The role of amino groups in water absorption by keratin. J Phys Chem 69:3280

    Article  PubMed  CAS  Google Scholar 

  217. Pauling L (1945) The adsorption of water by proteins. J Am Chem Soc 67:555–557

    Article  CAS  Google Scholar 

  218. Clifford J, Sheard B (1966) Nuclear magnetic resonance investigation of the state of water in human hair. Biopolymers 4:1057

    Article  CAS  Google Scholar 

  219. West GW, Haly AR, Feughelman M (1961) Physical properties of wool fibers at various regains: part III: study of the state of water in wool by NMR techniques. Text Res J 31:899

    Article  CAS  Google Scholar 

  220. Feughelman M, Haly AR (1962) The physical properties of wool fibers at various regains: part VII: the binding of water in keratin. Text Res J 32:966–971

    Article  CAS  Google Scholar 

  221. Cassie AB (1962) Absorption of water by wool. Trans Faraday Soc 41:458–464

    Article  Google Scholar 

  222. King G (1960) In: Hearle JWS, Peters RH (eds) Moisture in textiles, Chap 6. Interscience, New York

    Google Scholar 

  223. Maugh TN (1978) Hair: a diagnostic tool to complement blood serum and urine. Science 202:1271–1273

    Article  PubMed  Google Scholar 

  224. Pautard FGE (1963) Mineralization of keratin and its comparison with the enamel matrix. Nature 199:531–535

    Article  PubMed  CAS  Google Scholar 

  225. Dutcher TF, Rothman S (1951) Iron, copper and ash content of human hair of different colors. J Invest Dermatol 17:65

    PubMed  CAS  Google Scholar 

  226. Bate LC et al (1966) Microelement content of hair from New Zealand boys as determined by neutron activation analysis. N Z J Sci 9(3):559–564

    CAS  Google Scholar 

  227. Smart KL et al (2009) Copper and calcium uptake in colored hair. J Cosmet Sci 60:337–345

    PubMed  CAS  Google Scholar 

  228. Bhat GR et al (1979) The green hair problem: a preliminary investigation. J Soc Cosmet Chem 30:1–8

    CAS  Google Scholar 

  229. Misra HP (1974) Generation of superoxide free radical during autoxidation of thiols. J Biol Chem 249:2151–2155

    PubMed  CAS  Google Scholar 

  230. Millington KR (2006) Photoyellowing of wool. Part 2: photoyellowing mechanisms and methods of prevention. Color Technol 122:301–316

    Article  CAS  Google Scholar 

  231. Kempson IM, Skinner WM, Kirkbride KP (2007) The occurrence and incorporation of copper and zinc in hair and their potential as bioindicators: a review. J Toxicol Environ Health B 10:611–622

    Article  CAS  Google Scholar 

  232. Trunova V, Parshine N, Kondratyev V (2003) Determination of the distribution of trace elements in human hair as a function of position on the head by SRXRF and TXDRF. J Synchrotron Radiat 10:371–375

    Article  PubMed  CAS  Google Scholar 

  233. Fitzpatrick TB, Brunet P, Kukita A (1958) In: Montagna W, Ellis RA (eds) The biology of hair growth. Academic Press, New York, p 286

    Google Scholar 

  234. Robbins C (2002) Chemical and physical behavior of human hair, 4th edn. Springer Verlag, New York, p 97

    Google Scholar 

  235. Berry JA (1933) Detection of microbial lipase by copper soap formation. J Bacteriol 25(4):433–434

    PubMed  CAS  Google Scholar 

  236. Kosla T et al (2005) Iron content in the hair of schnauzer breed dogs from the region of Warsaw depending on the breed and colour. ISAH-Warsaw Poland 2:484–488

    Google Scholar 

  237. Liu Y et al (2004) Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 81:134–144

    Google Scholar 

  238. Qu X et al (2000) Hydroxyterephthalate as a fluorescent probe for hydroxyl radicals: application to hair melanin. Photochem Photobiol 71:307–313

    Article  PubMed  CAS  Google Scholar 

  239. Haywood RM et al (2006) Synthetic melanin as a model for soluble natural melanin in UVA-photosensitized superoxide formation. Photochem Photobiol 82:224–235

    Article  CAS  Google Scholar 

  240. Maletin YA et al (1988) Institute of general and inorganic chemistry. Academy of Sciences of the Ukranian SSR, Kiev. Translated from Teoreticheskaya I Eksperimental’naya Khimiya, 24(4):450–455

    Google Scholar 

  241. Katritzky AR, Akhmedov NG, Denisko OV (2003) 1H and 13C NMR spectroscopic study of oxidation of D, L-cystine and 3,3′-dithiobis(propionic acid) with hydrogen peroxide in aqueous solution. Magn Reson Chem 41:37–41

    Article  CAS  Google Scholar 

  242. Bruskov VI et al (2002) Heat induced generation of reactive oxygen species in water. Dokl Biochem Biophys 384:181. Translated from Dokl Akad Nauk, 384(6):821–824

    Google Scholar 

  243. Wesenberg G et al (1981) Cadmium content of indicator and target organs in rats after graded doses of cadmium. Int J Environ Stud 16(3–4):147–155

    Article  CAS  Google Scholar 

  244. Fowler BA (1986) Mechanisms of Indium,Thallium and Arsine Gas Toxicity, In: Friberg L, Nordberg GF, Vouk VB (eds) Handbook of toxicology of metals, 2nd edn. Elsevier, pp 267–275

    Google Scholar 

  245. Hasan MY et al (2003) Heavy metals profile of children from urban and rural regions in the United Arab Emirates. J Toxicol Clin Toxicol 41(4):491–492

    Google Scholar 

  246. Milosevic M et al (1980) Epidemiological significance for the determination of lead, copper and zinc in hair and permanent teeth in persons living in the vicinity of a lead smelter. Arh Hig Rad Toksikol 31(3):209–217

    CAS  Google Scholar 

  247. Capel ID et al (1981) Comparison of concentrations of some trace, bulk and toxic metals in the hair of normal and dyslexic children. Clin Chem 27(6):879–881

    PubMed  CAS  Google Scholar 

  248. Danks DA (1991) In: Goldsmith LA (ed) Physiology, biochemistry and molecular biology of the skin, vol 2. Oxford University Press, Oxford, pp 1351–1361

    Google Scholar 

  249. Brown AC, Crounse RG (1980) Hair trace elements and human illness. Praeger, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarence R. Robbins .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robbins, C.R. (2012). Chemical Composition of Different Hair Types. In: Chemical and Physical Behavior of Human Hair. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25611-0_2

Download citation

Publish with us

Policies and ethics