Skip to main content

Adaptive Power Management for Nanoscale SoC Design

  • Conference paper
Communication and Networking (FGCN 2011)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 266))

  • 869 Accesses

Abstract

The demand for power sensitive designs in system-on-chip (SoC) has grown significantly as MOSFET transistors scale down. Since portable battery powered devices such as cell phones, PDA’s, and portable computers are becoming more complex and prevalent, the demand for increased battery life will require designers to seek out new technologies and circuit techniques to maintain high performance and long operational lifetimes. As process dimensions shrink further toward nanometer technology, traditional methods of dynamic power reduction are becoming less effective due to the increased impact of standby power. Therefore, this paper proposes a novel adaptive power management system for nanoscale SoC design that reduces standby power dissipation. The proposed design method reduces the leakage power at least by 500 times for ISCAS’85 benchmark circuits designed using 32-nm CMOS technology comparing to the case where the method is not applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meijer, M., Pineda de Gyvez, J., Otten, R.: On-chip digital power supply control for system-on-chip applications. In: IEEE ISLPED, pp. 311–314 (August 2005)

    Google Scholar 

  2. Nakai, M., Akui, S., Seno, K., Meguro, T., Seki, T., Kondo, T., Hashiguchi, A., Kawahara, H., Kumano, K., Shimura, M.: Dynamic voltage and frequency management for a low-power embedded microprocessor. IEEE J. Solid-State Circuits 40(1), 28–35 (2005)

    Article  Google Scholar 

  3. Wang, W., Mishra, P.: System-Wide Leakage-Aware Energy Minimization Using Dynamic Voltage Scaling and Cache Reconfiguration in Multitasking Systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 99, 1–9 (2011)

    Google Scholar 

  4. Nourivand, A., Al-Khalili, A.J., Savaria, Y.: Postsilicon Tuning of Standby Supply Voltage in SRAMs to Reduce Yield Losses Due to Parametric Data-Retention Failures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 99, 1–13 (2011)

    Google Scholar 

  5. Pavan, T.K., Jagannadha Naidu, K., Shekar Babu, M.: Implementation of delay and power monitoring schemes to reduce the power consumption. In: IEEE International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), pp. 459–464 (July 2011)

    Google Scholar 

  6. Elgharbawy, W.M., Bayoumi, M.A.: Leakage sources and possible solutions in nanometer CMOS technologies. IEEE Circuits Syst. Magazine 5(4), 6–17 (2005)

    Article  Google Scholar 

  7. Agarwal, A., Mukhopadhyay, S., Raychowdhury, A., Roy, K., Kim, C.H.: Leakage power analysis and reduction for nanoscale circuits. IEEE Micro. 26(2), 68–80 (2006)

    Article  Google Scholar 

  8. Anis, M., Elmasry, M.: Multi-Threshold CMOS Digital Circuits: Managing Leakage Power. Kluwer, Norwell (2003)

    Book  MATH  Google Scholar 

  9. Inukai, T., Hiramot, T., Sakurai, T.: Variable threshold voltage CMOS (VTCMOS) is series connected circuits. In: Int. Symp. Low Power Electron. Des. (ISLPED), pp. 201–206 (2001)

    Google Scholar 

  10. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003)

    Article  Google Scholar 

  11. Hokazono, A., Balasubramanian, S., Ishimaru, K., Ishiuchi, H., Liu, T.K., Hu, C.: MOSFET design for forward body biasing scheme. IEEE Electron Device Lett. 27(5), 387–389 (2006)

    Article  Google Scholar 

  12. Kulkarni, M., Sheth, K., Agrawal, V.D.: Architectural power management for high leakage technologies. In: IEEE Southeastern Symposium on System Theory (SSST), pp. 67–72 (March 2011)

    Google Scholar 

  13. Ishibashi, K., Fujimoto, T., Yamashita, T., Okada, H., Arima, Y., Hashimoto, Y., Sakata, K., Minematsu, I., Itoh, Y., Toda, H., Ichihashi, M., Komatsu, Y., Hagiwara, M., Tsukada, T.: Low-voltage and low-power logic, memory, and analog circuit techniques for SoCs using 90 nm technology and beyond. IEICE Trans. Electon E89-C(3), 250–262 (2006)

    Article  Google Scholar 

  14. Anis, M., Elmasry, M.: Multi-threhsold CMOS digital circuits. Kluwer Academic Publishers (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ryu, JT., Kim, K.K. (2011). Adaptive Power Management for Nanoscale SoC Design. In: Kim, Th., et al. Communication and Networking. FGCN 2011. Communications in Computer and Information Science, vol 266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27201-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27201-1_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27200-4

  • Online ISBN: 978-3-642-27201-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics