Skip to main content

Antisense Technology: From Unique Laboratory Tool to Novel Anticancer Treatments

  • Chapter
  • First Online:
From Nucleic Acids Sequences to Molecular Medicine

Abstract

Antisense reagents and technology have developed as extraordinarily useful tools for the analysis of gene function. The capacity of antisense to reduce expression of RNA (including protein-encoding mRNA and noncoding RNA) important in a multitude of diseases has led to the concept of using antisense molecules as drugs to treat those diseases. Antisense oligonucleotides (ASOs) are being developed for this purpose, with single-stranded DNA ASOs currently the most advanced in clinical testing. Phase I to III clinical trials of ASOs are either completed or in progress for a number of diseases, including cancer. In this review, we focus on progress in developing antisense drugs to downregulate genes mediating malignant characteristics in tumors originating in multiple tissues. In addition, we review progress in (1) ASO targeting of microRNAs (miRNAs) to repress malignant characteristics in multiple tumor types including use of MT-AMOs (multiple-target anti-miRNA oligonucleotides); (2) combining ASOs with each other to generate “synthetic lethality” that enhances chemotherapeutic drug activity; (3) the use of RASONs (radiolabeled antisense ODNs) to image tumors for diagnostic purposes and to monitor therapeutic activity; (4) “on-target” and “off-target” effects of ASOs that lead to both decreases and increases in therapeutic benefit; (5) the chemistries of ASOs that enhance ASO stability, specificity, and activity and reduce undesirable toxicity; and (6) the relative advantages and disadvantages of RNAi-dependent and other ASOs for future application as therapeutic agents to diagnose, monitor, and treat cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACRBP:

Acrosin-binding protein

AD–PEG:

Adamantane–polyethylene glycol

AD–PEG–Tf:

Adamantane–polyethylene glycol–transferrin

Ago 2:

Argonaute 2

AKT:

Serine–threonine protein kinase B

AMO:

Anti-miRNA antisense oligodeoxynucleotide inhibitors

APC/C:

Anaphase-promoting complex/cyclosome

APE1:

Apurinic/apyrimidinic endonuclease-1

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and Rad3 related

AuNPs:

Gold nanoparticles

Bcl-2:

B-cell lymphoma-2

Bcl-xL:

B-cell lymphoma extra long

BRCA1:

Breast cancer susceptibility gene 1

BRCA2:

Breast cancer susceptibility gene 2

CDK:

Cyclin-dependent kinase

Chk1:

Checkpoint kinase 1, S- and G2-checkpoint protein

Chk2:

Checkpoint kinase 2, a serine–threonine kinase

c-Raf:

Proto-oncogene c-Raf

DDB1:

Damage-specific DNA-binding protein 1

DHFR:

Dihydrofolate reductase

DNA-PKcs:

DNA-dependent protein kinase catalytic subunit

DR5:

Death receptor 5, officially TNFRSF10B, or tumor necrosis factor receptor superfamily, member 10b

ECT2:

Epithelial cell transforming sequence 2 (exchange factor for GTPases)

EGFR:

Epidermal growth factor receptor; Her-1

FANCD2:

Fanconi anemia complementation group D2

FEN:

Flap 5′-endonuclease

GEF-H1:

Rho/Rac guanine nucleotide exchange factor

GSK-3B:

Glycogen synthase kinase 3 beta

HIV:

Human immunodeficiency virus

HR:

Homologous recombination

H-Ras:

GTPase H-Ras (a.k.a. transforming protein p21)

HSP90:

90-kDa heat shock protein

IPMK:

Inositol polyphosphate multikinase

KSP:

Kinesin spindle protein

Ki-RAS:

RAS-family member K

LNA:

Locked nucleic acid

MDR:

Multidrug resistance

MGMT:

O6-methylguanine-DNA methyltransferase

MK2:

Officially MAPKAPK2, mitogen-activated protein kinase-activated protein kinase 2

MLH1:

mutL homolog 1, colon cancer, nonpolyposis type 2

MMR:

Mismatch repair

MPO or PMO:

Morpholino phosphoroamide

MRI:

Magnetic resonance imaging

MSH2:

mutS homolog 2, nonpolyposis type 1

MSH6:

mutS homolog 6

mTOR:

Mammalian target of rapamycin

NGR peptide:

Asparagine–glycine–arginine peptide

NOTCH-1:

Notch homolog 1

NSCLC:

Non-small cell lung carcinoma

PAK3:

p21 protein (Cdc42/Rac)-activated kinase 3

PARP:

Poly(ADP-ribose) polymerase

PEI-C:

Catechol-conjugated polyethylenimine

Pgp:

P-glycoprotein

PINK1:

PTEN-induced putative kinase 1

PKCα:

Protein kinase C alpha

PLK1:

Polo-like kinase 1

pol:

Polymerase

PSMA:

Prostate-specific membrane antigen

PSMA6:

Proteasome (prosome, macropain) subunit, alpha type, 6, a subunit of proteasome 20S

PTEN:

Phosphatase–tensin homolog

PTP-1B:

Protein tyrosine phosphotase-1B

RAD51:

DNA repair protein, homolog of Saccharomyces cerevisiae rad51 protein that is a determinant of radiation sensitivity

RAD52:

DNA repair protein, homolog of Saccharomyces cerevisiae rad52 protein that is a determinant of radiation sensitivity

RB:

Retinoblastoma protein

ROS:

Reactive oxygen species

RRM2:

Ribonucleotide reductase M2

SGK2:

Serum/glucocorticoid regulated kinase 2

SKP2:

S-phase kinase-associated protein 2 (p45)

SNAIL2:

Also known as SNAI2, homolog of Drosophila sna, a zinc-finger, DNA-binding transcriptional factor

SNALP:

Stable nucleic acid-lipid particle

STK33:

Serine–threonine kinase

tb-FGF:

Truncated human basic fibroblast growth factor

TBK1:

TANK-binding kinase

TGF-β2:

Transforming growth factor-beta 2

TNF-α:

Tumor necrosis factor-alpha

topo:

Topoisomerase

TS:

Thymidylate synthase

TSC2:

Tuberous sclerosis 2

TUBGCP2:

Tubulin, gamma complex associated protein 2

VEGF:

Vascular endothelial growth factor

VHL:

von Hippel–Landau protein

WEE1:

G2-checkpoint protein (mitotic inhibitor) that is a homolog of the wee1 yeast kinase

XAB2:

XPA-binding protein 2a, also known as pre-mRNA-splicing factor SYF1; a transcription-coupled DNA repair protein

XIAP:

X-linked inhibitor of apoptosis

XRCC1:

X-ray repair cross-complementing protein 1

References

  • Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86

    Article  PubMed  CAS  Google Scholar 

  • Abbott DW, Freeman ML, Holt JT (1998) Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90:978–985

    Article  PubMed  CAS  Google Scholar 

  • Acsadi G, Dickson G, Love DR et al (1991) Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352:815–818

    Article  PubMed  CAS  Google Scholar 

  • Adjei AA, Dy GK, Erlichman C et al (2003) A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, in combination with gemcitabine in patients with advanced cancer. Clin Cancer Res 9:115–123

    PubMed  CAS  Google Scholar 

  • Advani R, Peethambaram P, Lum BL et al (2004) A Phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 100:321–326

    Article  PubMed  CAS  Google Scholar 

  • Agrawal S (1999) Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta 1489:53–68

    Article  PubMed  CAS  Google Scholar 

  • Aigner A (2006) Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol 124:12–25

    Article  PubMed  CAS  Google Scholar 

  • Akinc A, Zumbuehl A, Goldberg M et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569

    Article  PubMed  CAS  Google Scholar 

  • Alam MR, Ming X, Fisher M et al (2011) Multivalent cyclic RGD conjugates for targeted delivery of small interfering RNA. Bioconjug Chem 22:1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Alberts SR, Schroeder M, Erlichman C et al (2004) Gemcitabine and ISIS-2503 for patients with locally advanced or metastatic pancreatic adenocarcinoma: a North Central Cancer Treatment Group phase II trial. J Clin Oncol 22:4944–4950

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Salas LM (2008) Nucleic acids as therapeutic agents. Curr Top Med Chem 8:1379–1404

    Article  PubMed  CAS  Google Scholar 

  • Aly A, Ganesan S (2011) BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability. J Mol Cell Biol 3:66–74

    Article  PubMed  CAS  Google Scholar 

  • Ambegia E, Ansell S, Cullis P et al (2005) Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim Biophys Acta 1669:155–163

    Article  PubMed  CAS  Google Scholar 

  • Anderson VE, Walton MI, Eve PD et al (2011) CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res 71:463–472

    Article  PubMed  CAS  Google Scholar 

  • Arechavala-Gomeza V, Graham IR, Popplewell LJ et al (2007) Comparative analysis of antisense oligonucleotide sequences for targeted skipping of exon 51 during dystrophin pre-mRNA splicing in human muscle. Hum Gene Ther 18:798–810

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Yokoyama K, Kinuya S et al (2004) In vitro detection of mdr1 mRNA in murine leukemia cells with 111In-labeled oligonucleotide. Eur J Nucl Med Mol Imaging 31:1523–1529

    Article  PubMed  CAS  Google Scholar 

  • Baldwin A, Grueneberg DA, Hellner K et al (2010) Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proc Natl Acad Sci USA 107:12463–12468

    Article  PubMed  CAS  Google Scholar 

  • Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108–112

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bauzon F, Zhu L (2010) Racing to block tumorigenesis after pRb loss: an innocuous point mutation wins with synthetic lethality. Cell Cycle 9:2118–2123

    Article  PubMed  CAS  Google Scholar 

  • Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  PubMed  CAS  Google Scholar 

  • Berg RW, Ferguson PJ, Vincent MD et al (2003) A “combination oligonucleotide” antisense strategy to downregulate thymidylate synthase and decrease tumor cell growth and drug resistance. Cancer Gene Ther 10:278–286

    Article  PubMed  CAS  Google Scholar 

  • Bertrand JR, Pottier M, Vekris A et al (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 296:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Biswas S, Dodwadkar NS, Sawant RR et al (2011) Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: synthesis and in vitro characterization. Bioconjug Chem 22:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Boeckle S, von Gersdorff K, van der Piepen S et al (2004) Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med 6:1102–1111

    Article  PubMed  CAS  Google Scholar 

  • Bogdahn U, Hau P, Stockhammer G et al (2011) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13:132–142

    Article  PubMed  CAS  Google Scholar 

  • Bonci D, Coppola V, Musumeci M et al (2008) The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271–1277

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  PubMed  CAS  Google Scholar 

  • Brough R, Frankum JR, Costa-Cabral S et al (2011) Searching for synthetic lethality in cancer. Curr Opin Genet Dev 21:34–41

    Article  PubMed  CAS  Google Scholar 

  • Bruserud O (2007) Introduction: RNA and the treatment of human cancer. Curr Pharm Biotechnol 8:318–319

    Article  PubMed  CAS  Google Scholar 

  • Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  PubMed  CAS  Google Scholar 

  • Bushby K, Finkel R, Birnkrant DJ et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

    Article  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  • Carroll JB, Warby SC, Southwell AL et al (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the huntington disease gene/allele-specific silencing of mutant huntingtin. Mol Ther 19:2178–2185

    Article  PubMed  CAS  Google Scholar 

  • Carter BZ, Mak DH, Morris SJ et al (2011) XIAP antisense oligonucleotide (AEG35156) achieves target knockdown and induces apoptosis preferentially in CD34 + 38- cells in a phase 1/2 study of patients with relapsed/refractory AML. Apoptosis 16:67–74

    Article  PubMed  CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed  CAS  Google Scholar 

  • Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–1505

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H (2003) RNA interference: traveling in the cell and gaining functions? Trends Genet 19:39–46

    Article  PubMed  CAS  Google Scholar 

  • Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364

    Article  PubMed  CAS  Google Scholar 

  • Chanan-Khan AA, Niesvizky R, Hohl RJ et al (2009) Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk Lymphoma 50:559–565

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Zhong S, Zhu X et al (2008) Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res 68:3169–3177

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Wang X, Wang Y et al (2010a) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Control Release 145:17–25

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Blank JL, Peters T et al (2010b) Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res 70:4318–4326

    Article  PubMed  CAS  Google Scholar 

  • Cheng CJ, Saltzman WM (2011) Enhanced siRNA delivery into cells by exploiting the synergy between targeting ligands and cell-penetrating peptides. Biomaterials 32:6194–6203

    PubMed  CAS  Google Scholar 

  • Chi KN, Zoubeidi A, Gleave ME (2008a) Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin for the treatment of cancer. Expert Opin Investig Drugs 17:1955–1962

    Article  PubMed  CAS  Google Scholar 

  • Chi KN, Siu LL, Hirte H et al (2008b) A phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clin Cancer Res 14:833–839

    Article  PubMed  CAS  Google Scholar 

  • Chi KN, Hotte SJ, Yu EY et al (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28:4247–4254

    Article  PubMed  CAS  Google Scholar 

  • Chia S, Dent S, Ellard S et al (2009) Phase II trial of OGX-011 in combination with docetaxel in metastatic breast cancer. Clin Cancer Res 15:708–713

    Article  PubMed  CAS  Google Scholar 

  • Cho HY, Srinivasan A, Hong J et al (2011) Synthesis of biocompatible PEG-based star polymers with cationic and degradable core for siRNA delivery. Biomacromolecules 12:3478–3486

    Article  PubMed  CAS  Google Scholar 

  • Cirak S, Arechavala-Gomeza V, Guglieri M et al (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378:595–605

    Article  PubMed  CAS  Google Scholar 

  • Cirak S, Feng L, Anthony K et al (2012) Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 20:462–467

    Google Scholar 

  • Cooper TA, Wan L, Dreyfuss G (2009) RNA and disease. Cell 136:777–793

    Article  PubMed  CAS  Google Scholar 

  • Coppelli FM, Grandis JR (2005) Oligonucleotides as anticancer agents: from the benchside to the clinic and beyond. Curr Pharm Des 11:2825–2840

    Article  PubMed  CAS  Google Scholar 

  • Coudert B, Anthoney A, Fiedler W et al (2001) Phase II trial with ISIS 5132 in patients with small-cell (SCLC) and non-small cell (NSCLC) lung cancer. A European Organization for Research and Treatment of Cancer (EORTC) early clinical studies group report. Eur J Cancer 37:2194–2198

    Article  PubMed  CAS  Google Scholar 

  • Cripps MC, Figueredo AT, Oza AM et al (2002) Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 8:2188–2192

    PubMed  CAS  Google Scholar 

  • Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST (1998) Vitravene—another piece in the mosaic. Antisense Nucleic Acid Drug Dev 8:vii–viii

    Article  PubMed  CAS  Google Scholar 

  • Crooke ST, Vickers T, Lima W et al (2007) In: Crooke ST (ed) Antisense drug technology: principles, strategies and applications. Taylor & Francis Group, Boca Raton, FL, pp 5–46

    Chapter  Google Scholar 

  • Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6:659–668

    Article  PubMed  CAS  Google Scholar 

  • Davis ME, Zuckerman JE, Choi CH et al (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133

    Article  PubMed  CAS  Google Scholar 

  • de Fougerolles AR (2008) Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 19:125–132

    Article  PubMed  CAS  Google Scholar 

  • Dean E, Jodrell D, Connolly K et al (2009) Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol 27:1660–1666

    Article  PubMed  CAS  Google Scholar 

  • Dedes KJ, Wetterskog D, Ashworth A et al (2011) Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol 8:261–271

    Article  PubMed  CAS  Google Scholar 

  • Di Cresce C, Koropatnick J (2010) Antisense treatment in human prostate cancer and melanoma. Curr Cancer Drug Targets 10:555–565

    Article  PubMed  Google Scholar 

  • Di Cresce C, Figueredo R, Ferguson PJ et al (2011) Combining small interfering RNAs targeting thymidylate synthase and thymidine kinase 1 or 2 sensitizes human tumor cells to 5-fluorodeoxyuridine and pemetrexed. J Pharmacol Exp Ther 338:952–963

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Li A, Wang J et al (2010) Synthetic lethality through combined Notch-epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res 70:5465–5474

    Article  PubMed  CAS  Google Scholar 

  • Duchaine TF, Slack FJ (2009) RNA interference and micro RNA-oriented therapy in cancer: rationales, promises, and challenges. Curr Oncol 16:61–66

    Article  PubMed  CAS  Google Scholar 

  • Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  PubMed  CAS  Google Scholar 

  • Eguchi T, Takaki T, Itadani H et al (2007) RB silencing compromises the DNA damage-induced G2/M checkpoint and causes deregulated expression of the ECT2 oncogene. Oncogene 26:509–520

    Article  PubMed  CAS  Google Scholar 

  • Evers B, Helleday T, Jonkers J (2010) Targeting homologous recombination repair defects in cancer. Trends Pharmacol Sci 31:372–380

    Article  PubMed  CAS  Google Scholar 

  • Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  PubMed  CAS  Google Scholar 

  • Feliciano A, Sanchez-Sendra B, Kondoh H et al (2011) MicroRNAs regulate key effector pathways of senescence. J Aging Res 2011:205378

    PubMed  Google Scholar 

  • Feng Z, Scott SP, Bussen W et al (2011) Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc Natl Acad Sci USA 108:686–691

    Article  PubMed  CAS  Google Scholar 

  • Ferguson PJ, DeMoor JM, Vincent MD et al (2001) Antisense-induced down-regulation of thymidylate synthase and enhanced cytotoxicity of 5-FUdR in 5-FUdR-resistant HeLa cells. Br J Pharmacol 134:1437–1446

    Article  PubMed  CAS  Google Scholar 

  • Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Bieber T, Li Y et al (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279

    Article  PubMed  CAS  Google Scholar 

  • Flynn J, Berg RW, Wong T et al (2006) Therapeutic potential of antisense oligodeoxynucleotides to down-regulate thymidylate synthase in mesothelioma. Mol Cancer Ther 5:1423–1433

    Article  PubMed  CAS  Google Scholar 

  • Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  PubMed  CAS  Google Scholar 

  • Fu P, Shen B, Zhao C et al (2010) Molecular imaging of MDM2 messenger RNA with 99mTc-labeled antisense oligonucleotides in experimental human breast cancer xenografts. J Nucl Med 51:1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Ganesan S, Silver DP, Greenberg RA et al (2002) BRCA1 supports XIST RNA concentration on the inactive X chromosome. Cell 111:393–405

    Article  PubMed  CAS  Google Scholar 

  • Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5:381–391

    Article  PubMed  CAS  Google Scholar 

  • Geary RS, Watanabe TA, Truong L et al (2001) Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 296:890–897

    PubMed  CAS  Google Scholar 

  • Geary RS, Yu RZ, Watanabe T et al (2003) Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • Geary RS, Bradley JD, Watanabe T et al (2006) Lack of pharmacokinetic interaction for ISIS 113715, a 2′-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. Clin Pharmacokinet 45:789–801

    Article  PubMed  CAS  Google Scholar 

  • Gleave M, Jansen B (2003) Clusterin and IGFBPs as antisense targets in prostate cancer. Ann NY Acad Sci 1002:95–104

    Article  PubMed  CAS  Google Scholar 

  • Gollob J, Infante, JR, Shapiro G et al (2010) Interim safety and pharmacodynamic results for ALN-VSP02, a novel RNAi therapeutic for solid tumors with liver involvement. J Clin Oncol 28(suppl): abstr 3042

    Google Scholar 

  • Golzio M, Mazzolini L, Paganin-Gioanni A et al (2009) Targeted gene silencing into solid tumors with electrically mediated siRNA delivery. Methods Mol Biol 555:15–27

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Kay MA (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15:878–888

    PubMed  CAS  Google Scholar 

  • Grunweller A, Wyszko E, Bieber B et al (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, Szankasi P, Roberts CJ et al (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068

    Article  PubMed  CAS  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    Article  PubMed  CAS  Google Scholar 

  • Herrero MA, Toma FM, Al-Jamal KT et al (2009) Synthesis and characterization of a carbon nanotube-dendron series for efficient siRNA delivery. J Am Chem Soc 131:9843–9848

    Article  PubMed  CAS  Google Scholar 

  • Higuchi Y, Kawakami S, Hashida M (2010) Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs 24:195–205

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery D, Nunez G, Milliman C et al (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    Article  PubMed  CAS  Google Scholar 

  • Hossini AM, Eberle J, Fecker LF et al (2003) Conditional expression of exogenous Bcl-X(S) triggers apoptosis in human melanoma cells in vitro and delays growth of melanoma xenografts. FEBS Lett 553:250–256

    Article  PubMed  CAS  Google Scholar 

  • Intra J, Salem AK (2008) Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release 130:129–138

    Article  PubMed  CAS  Google Scholar 

  • Ivanova G, Arzumanov A, Gait MJ et al (2007) Comparative studies of tricyclo-DNA- and LNA-containing oligonucleotides as inhibitors of HIV-1 gene expression. Nucleosides Nucleotides Nucleic Acids 26:747–750

    Article  PubMed  CAS  Google Scholar 

  • Izant JG, Weintraub H (1984) Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36:007–1015

    Article  Google Scholar 

  • Jachimczak P, Bogdahn U, Schneider J et al (1993) The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78:944–951

    Article  PubMed  CAS  Google Scholar 

  • Jaschinski F, Rothhammer T, Jachimczak P et al (2011) The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-beta2. Curr Pharm Biotechnol 12:2203–2213

    Google Scholar 

  • Jason TL, Koropatnick J, Berg RW (2004) Toxicology of antisense therapeutics. Toxicol Appl Pharmacol 201:66–83

    Article  PubMed  CAS  Google Scholar 

  • Jason TL, Figueredo R, Ferguson PJ et al (2008) ODN 491, a novel antisense oligodeoxynucleotide that targets thymidylate synthase, exerts cell-specific effects in human tumor cell lines. DNA Cell Biol 27:229–240

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Reinhardt HC, Bartkova J et al (2009) The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev 23:1895–1909

    Article  PubMed  CAS  Google Scholar 

  • Juliano R, Alam MR, Dixit V et al (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36:4158–4171

    Article  PubMed  CAS  Google Scholar 

  • Kaina B, Margison GP, Christmann M (2010) Targeting O-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci 67:3663–3681

    Article  PubMed  CAS  Google Scholar 

  • Kairemo KJ, Tenhunen M, Jekunen AP (1996a) Dosimetry of radionuclide therapy using radiophosphonated antisense oligodeoxynucleotide phosphorothioates based on animal pharmacokinetic and tissue distribution data. Antisense Nucleic Acid Drug Dev 6:215–220

    Article  PubMed  CAS  Google Scholar 

  • Kairemo KJ, Tenhunen M, Jekunen AP (1996b) Oligoradionuclidetherapy using radiolabelled antisense oligodeoxynucleotide phosphorothioates. Anticancer Drug Des 11:439–449

    PubMed  CAS  Google Scholar 

  • Kairemo KJ, Tenhunen M, Jekunen AP (1998) Gene therapy using antisense oligodeoxynucleotides labeled with Auger-emitting radionuclides. Cancer Gene Ther 5:408–412

    PubMed  CAS  Google Scholar 

  • Kairemo KJ, Jekunen AP, Tenhunen M (2000) Dosimetry and optimization of in vivo targeting with radiolabeled antisense oligodeoxynucleotides: oligonucleotide radiotherapy. Methods Enzymol 314:506–524

    Article  PubMed  CAS  Google Scholar 

  • Kam NW, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    Article  PubMed  CAS  Google Scholar 

  • Kamimura K, Suda T, Xu W et al (2009) Image-guided, lobe-specific hydrodynamic gene delivery to swine liver. Mol Ther 17:491–499

    Article  PubMed  CAS  Google Scholar 

  • Kelland L (2006) Discontinued drugs in 2005: oncology drugs. Expert Opin Investig Drugs 15:1309–1318

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Lee YS, Carthew RW (2007) Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13:22–29

    Article  PubMed  CAS  Google Scholar 

  • Kinali M, Arechavala-Gomeza V, Feng L et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  PubMed  CAS  Google Scholar 

  • Knox JJ, Chen XE, Feld R et al (2008) A phase I-II study of oblimersen sodium (G3139, Genasense) in combination with doxorubicin in advanced hepatocellular carcinoma (NCI # 5798). Invest New Drugs 26:193–194

    Article  PubMed  CAS  Google Scholar 

  • Koller E, Vincent TM, Chappell A et al (2011) Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39:4795–4807

    Article  PubMed  CAS  Google Scholar 

  • Koslowsky I, Shahhosseini S, Mirzayans R et al (2011) Evaluation of an 18F-labeled oligonucleotide probe targeting p21(WAF1) transcriptional changes in human tumor cells. Oncol Res 19:265–274

    Article  PubMed  CAS  Google Scholar 

  • Kota J, Chivukula RR, O’Donnell KA et al (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137:1005–1017

    Article  PubMed  CAS  Google Scholar 

  • Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4:294–301

    Article  PubMed  CAS  Google Scholar 

  • Kuijpers WH, Bos ES, Kaspersen FM et al (1993) Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem 4:94–102

    Article  PubMed  CAS  Google Scholar 

  • Kumar MS, Lu J, Mercer KL et al (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    Article  PubMed  CAS  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  PubMed  CAS  Google Scholar 

  • LaCasse EC, Cherton-Horvat GG, Hewitt KE et al (2006) Preclinical characterization of AEG35156/GEM 640, a second-generation antisense oligonucleotide targeting X-linked inhibitor of apoptosis. Clin Cancer Res 12:5231–5241

    Article  PubMed  CAS  Google Scholar 

  • Lai SY, Koppikar P, Thomas SM et al (2009) Intratumoral epidermal growth factor receptor antisense DNA therapy in head and neck cancer: first human application and potential antitumor mechanisms. J Clin Oncol 27:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Trainer AH, Friedman LS et al (1999) Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 4:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Lee SH, Kim JS et al (2011) Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release 155:3–10

    Article  PubMed  CAS  Google Scholar 

  • Lehto T, Simonson OE, Mager I et al (2011) A peptide-based vector for efficient gene transfer in vitro and in vivo. Mol Ther 19:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Leonetti C, Zupi G (2007) Targeting different signaling pathways with antisense oligonucleotides combination for cancer therapy. Curr Pharm Des 13:463–470

    Article  PubMed  CAS  Google Scholar 

  • Leung M, Rosen D, Fields S et al (2011) Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Mol Med 17:854–862

    Article  PubMed  CAS  Google Scholar 

  • Lewis DL, Wolff JA (2005) Delivery of siRNA and siRNA expression constructs to adult mammals by hydrodynamic intravascular injection. Methods Enzymol 392:336–350

    Article  PubMed  CAS  Google Scholar 

  • Lewis DL, Hagstrom JE, Loomis AG et al (2002) Efficient delivery of siRNA for inhibition of gene expression in postnatal mice. Nat Genet 32:107–108

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Dai T, Xiong H et al (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One 5:e15797

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Song Y, Liu D (1999) Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 6:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Lord CJ, McDonald S, Swift S et al (2008) A high-throughput RNA interference screen for DNA repair determinants of PARP inhibitor sensitivity. DNA Repair (Amst) 7:2010–2019

    Article  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Xiao J, Lin H et al (2009) A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 37:e24

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Emanuele MJ, Li D et al (2009) A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137:835–848

    Article  PubMed  CAS  Google Scholar 

  • Maclean KH, Dorsey FC, Cleveland JL et al (2008) Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 118:79–88

    Article  PubMed  CAS  Google Scholar 

  • Mansoor M, Melendez AJ (2008) Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul Syst Biol 2:275–295

    CAS  Google Scholar 

  • Marshall JL, Eisenberg SG, Johnson MD et al (2004) A phase II trial of ISIS 3521 in patients with metastatic colorectal cancer. Clin Colorectal Cancer 4:268–274

    Article  PubMed  CAS  Google Scholar 

  • Martello G, Rosato A, Ferrari F et al (2010) A microRNA targeting dicer for metastasis control. Cell 141:1195–1207

    Article  PubMed  CAS  Google Scholar 

  • Martin SA, McCarthy A, Barber LJ et al (2009) Methotrexate induces oxidative DNA damage and is selectively lethal to tumour cells with defects in the DNA mismatch repair gene MSH2. EMBO Mol Med 1:323–337

    Article  PubMed  CAS  Google Scholar 

  • Martin SA, McCabe N, Mullarkey M et al (2010) DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell 17:235–248

    Article  PubMed  CAS  Google Scholar 

  • Martin SA, Hewish M, Sims D et al (2011) Parallel high-throughput RNA interference screens identify PINK1 as a potential therapeutic target for the treatment of DNA mismatch repair-deficient cancers. Cancer Res 71:1836–1848

    Article  PubMed  CAS  Google Scholar 

  • Marwick C (1998) First “antisense” drug will treat CMV retinitis. JAMA 280:871

    Article  PubMed  CAS  Google Scholar 

  • Matsubara H, Takeuchi T, Nishikawa E et al (2007) Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26:6099–6105

    Article  PubMed  CAS  Google Scholar 

  • McCabe N, Turner NC, Lord CJ et al (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115

    Article  PubMed  CAS  Google Scholar 

  • McCaffrey AP, Meuse L, Pham TT et al (2002) RNA interference in adult mice. Nature 418:38–39

    Article  PubMed  CAS  Google Scholar 

  • McNamara JO 2nd, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A et al (2004a) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Dorsett Y et al (2004b) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  PubMed  CAS  Google Scholar 

  • Mendes-Pereira AM, Martin SA, Brough R et al (2009) Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med 1:315–322

    Article  PubMed  CAS  Google Scholar 

  • Michels S, Schmidt-Erfurth U, Rosenfeld PJ (2006) Promising new treatments for neovascular age-related macular degeneration. Expert Opin Investig Drugs 15:779–793

    Article  PubMed  CAS  Google Scholar 

  • Miyake H, Nelson C, Rennie PS et al (2000) Testosterone-repressed prostate message-2 is an antiapoptotic gene involved in progression to androgen independence in prostate cancer. Cancer Res 60:170–176

    PubMed  CAS  Google Scholar 

  • Miyake H, Hara I, Kamidono S et al (2003) Resistance to cytotoxic chemotherapy-induced apoptosis in human prostate cancer cells is associated with intracellular clusterin expression. Oncol Rep 10:469–473

    PubMed  CAS  Google Scholar 

  • Mizuarai S, Irie H, Schmatz DM et al (2008) Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets. Curr Mol Med 8:774–783

    Article  PubMed  CAS  Google Scholar 

  • Mizuarai S, Yamanaka K, Itadani H et al (2009) Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor. Mol Cancer 8:34

    Article  PubMed  CAS  Google Scholar 

  • Monaco AP, Bertelson CJ, Liechti-Gallati S et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95

    Article  PubMed  CAS  Google Scholar 

  • Moreira JN, Santos A, Simoes S (2006) Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev Recent Clin Trials 1:217–235

    Article  PubMed  CAS  Google Scholar 

  • Morgan-Lappe S, Woods KW, Li Q et al (2006) RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 25:1340–1348

    Article  PubMed  CAS  Google Scholar 

  • Morrissey DV, Lockridge JA, Shaw L et al (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Mu P, Nagahara S, Makita N et al (2009) Systemic delivery of siRNA specific to tumor mediated by atelocollagen: combined therapy using siRNA targeting Bcl-xL and cisplatin against prostate cancer. Int J Cancer 125:2978–2990

    Article  PubMed  CAS  Google Scholar 

  • Mukai H, Kawakami S, Hashida M (2008) Renal press-mediated transfection method for plasmid DNA and siRNA to the kidney. Biochem Biophys Res Commun 372:383–387

    Article  PubMed  CAS  Google Scholar 

  • Mukai H, Kawakami S, Kamiya Y et al (2009) Pressure-mediated transfection of murine spleen and liver. Hum Gene Ther 20:1157–1167

    Article  PubMed  CAS  Google Scholar 

  • Mukai H, Kawakami S, Takahashi H et al (2010) Key physiological phenomena governing transgene expression based on tissue pressure-mediated transfection in mice. Biol Pharm Bull 33:1627–1632

    Article  PubMed  CAS  Google Scholar 

  • Mulholland P (2011) “A trial looking at Trabedersen (AP12009) for anaplastic astrocytoma that has come back after treatment or continued to grow during treatment (SAPPHIRE).” from http://cancerhelp.cancerresearchuk.org/trials/a-trial-Trabedersen-AP12009-anaplastic-astrocytoma-come-back-after-treatment-or-continued-grow-during-treatment

  • Muntoni F, Wood MJ (2011) Targeting RNA to treat neuromuscular disease. Nat Rev Drug Discov 10:621–637

    Article  PubMed  CAS  Google Scholar 

  • Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558:63–68

    Article  PubMed  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  PubMed  CAS  Google Scholar 

  • Nghiem P, Park PK, Kim Y et al (2001) ATR inhibition selectively sensitizes G1 checkpoint-deficient cells to lethal premature chromatin condensation. Proc Natl Acad Sci USA 98:9092–9097

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff BJ, Hendrix MJ, Pollock PM et al (2005) Notch and NOXA-related pathways in melanoma cells. J Investig Dermatol Symp Proc 10:95–104

    Article  PubMed  CAS  Google Scholar 

  • Nijman SM (2011) Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett 585:1–6

    Article  PubMed  CAS  Google Scholar 

  • O’Brien SM, Cunningham CC, Golenkov AK et al (2005) Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 23:7697–7702

    Article  PubMed  CAS  Google Scholar 

  • O’Brien S, Moore JO, Boyd TE et al (2007) Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25:1114–1120

    Article  PubMed  CAS  Google Scholar 

  • O’Brien S, Moore JO, Boyd TE et al (2009) 5-year survival in patients with relapsed or refractory chronic lymphocytic leukemia in a randomized, phase III trial of fludarabine plus cyclophosphamide with or without oblimersen. J Clin Oncol 27:5208–5212

    Article  PubMed  CAS  Google Scholar 

  • O’Connor R (2009) A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance. Curr Cancer Drug Targets 9:273–280

    Article  PubMed  Google Scholar 

  • O’Rourke JR, Swanson MS (2009) Mechanisms of RNA-mediated disease. J Biol Chem 284:7419–7423

    Article  PubMed  CAS  Google Scholar 

  • Oh YK, Park TG (2009) siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 61:850–862

    Article  PubMed  CAS  Google Scholar 

  • Olivares J, Kumar P, Yu Y et al (2011) Phase I trial of TGF-{beta}2 antisense GM-CSF gene-modified autologous tumor cell (TAG) vaccine. Clin Cancer Res 17:183–192

    Article  CAS  Google Scholar 

  • Oza AM, Elit L, Swenerton K et al (2003) Phase II study of CGP 69846A (ISIS 5132) in recurrent epithelial ovarian cancer: an NCIC clinical trials group study (NCIC IND.116). Gynecol Oncol 89:129–133

    Article  PubMed  CAS  Google Scholar 

  • Paganin-Gioanni A, Bellard E, Escoffre JM et al (2011) Direct visualization at the single-cell level of siRNA electrotransfer into cancer cells. Proc Natl Acad Sci USA 108:10443–10447

    Article  PubMed  CAS  Google Scholar 

  • Pandyra AA, Berg R, Vincent M et al (2007) Combination silencer RNA (siRNA) targeting Bcl-2 antagonizes siRNA against thymidylate synthase in human tumor cell lines. J Pharmacol Exp Ther 322:123–132

    Article  PubMed  CAS  Google Scholar 

  • Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205

    Article  PubMed  CAS  Google Scholar 

  • Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 74:4370–4374

    Article  PubMed  CAS  Google Scholar 

  • Paz-Ares L, Douillard JY, Koralewski P et al (2006) Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 24:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Plummer R (2010) Perspective on the pipeline of drugs being developed with modulation of DNA damage as a target. Clin Cancer Res 16:4527–4531

    Article  PubMed  CAS  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  PubMed  CAS  Google Scholar 

  • Puyol M, Martin A, Dubus P et al (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18:63–73

    Article  PubMed  CAS  Google Scholar 

  • Rayburn ER, Zhang R (2008) Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible? Drug Discov Today 13:513–521

    Article  PubMed  CAS  Google Scholar 

  • Rayburn ER, Wang H, Zhang R (2006) Antisense-based cancer therapeutics: are we there yet? Expert Opin Emerg Drugs 11:337–352

    Article  PubMed  CAS  Google Scholar 

  • Rehman FL, Lord CJ, Ashworth A (2010) Synthetic lethal approaches to breast cancer therapy. Nat Rev Clin Oncol 7:718–724

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt HC, Aslanian AS, Lees JA et al (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Li R, Zheng Y et al (1998) Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Biol Chem 273:34954–34960

    Article  PubMed  CAS  Google Scholar 

  • Rizzi F, Coletta M, Bettuzzi S (2009) Chapter 2: Clusterin (CLU): from one gene and two transcripts to many proteins. Adv Cancer Res 104:9–23

    Article  PubMed  CAS  Google Scholar 

  • Roberts J, Palma E, Sazani P et al (2006) Efficient and persistent splice switching by systemically delivered LNA oligonucleotides in mice. Mol Ther 14:471–475

    Article  PubMed  CAS  Google Scholar 

  • Rottmann S, Wang Y, Nasoff M et al (2005) A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci USA 102:15195–15200

    Article  PubMed  CAS  Google Scholar 

  • Ruzankina Y, Schoppy DW, Asare A et al (2009) Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat Genet 41:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Rychahou PG, Evers BM (2010) Hydrodynamic delivery protocols. Methods Mol Biol 623:189–195

    Article  PubMed  CAS  Google Scholar 

  • Saad F, Hotte S, North S et al (2011) Randomized phase II trial of Custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG trial P-06c. Clin Cancer Res 17:5765–5773

    Article  PubMed  CAS  Google Scholar 

  • Saleh M, Posey J, Pleasant L et al (2000) A phase II trial of ISIS 2503, an antisense inhibitor of H-ras, as first line therapy for advanced colorectal carcinoma. Proc Am Soc Clin Oncol 19:abstr 1258

    Google Scholar 

  • Sanguino A, Lopez-Berestein G, Sood AK (2008) Strategies for in vivo siRNA delivery in cancer. Mini Rev Med Chem 8:248–255

    Article  PubMed  CAS  Google Scholar 

  • Sargent DJ, Marsoni S, Monges G et al (2010) Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 28:3219–3226

    Article  PubMed  CAS  Google Scholar 

  • Sarthy AV, Morgan-Lappe SE, Zakula D et al (2007) Survivin depletion preferentially reduces the survival of activated K-Ras-transformed cells. Mol Cancer Ther 6:269–276

    Article  PubMed  CAS  Google Scholar 

  • Satkauskas S, Bureau MF, Mahfoudi A et al (2001) Slow accumulation of plasmid in muscle cells: supporting evidence for a mechanism of DNA uptake by receptor-mediated endocytosis. Mol Ther 4:317–323

    Article  PubMed  CAS  Google Scholar 

  • Schafer J, Hobel S, Bakowsky U et al (2010) Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery. Biomaterials 31:6892–6900

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD, Herr W, Hanel M et al (2011) Addition of AEG35156 XIAP antisense oligonucleotide in reinduction chemotherapy does not improve remission rates in patients with primary refractory acute myeloid leukemia in a randomized phase II study. Clin Lymphoma Myeloma Leuk 11:433–438

    Article  PubMed  CAS  Google Scholar 

  • Schlingensiepen R, Goldbrunner M, Szyrach MN et al (2005) Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104

    Article  PubMed  CAS  Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al (2006) Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    Article  PubMed  CAS  Google Scholar 

  • Scholl C, Frohling S, Dunn IF et al (2009) Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137:821–834

    Article  PubMed  CAS  Google Scholar 

  • Segura MF, Hanniford D, Menendez S et al (2009) Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA 106:1814–1819

    Article  PubMed  CAS  Google Scholar 

  • Sewell KL, Geary RS, Baker BF et al (2002) Phase I trial of ISIS 104838, a 2'-methoxyethyl modified antisense oligonucleotide targeting tumor necrosis factor-alpha. J Pharmacol Exp Ther 303:1334–1343

    Article  PubMed  CAS  Google Scholar 

  • Shaheen M, Allen C, Nickoloff JA et al (2011) Synthetic lethality: exploiting the addiction of cancer to DNA repair. Blood 117:6074–6082

    Article  PubMed  CAS  Google Scholar 

  • Shannan B, Seifert M, Leskov K et al (2006) Challenge and promise: roles for clusterin in pathogenesis, progression and therapy of cancer. Cell Death Differ 13:12–19

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA (2009) The centrality of RNA. Cell 136:577–580

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Gera J, Hu L et al (2002) Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 62:5027–5034

    PubMed  CAS  Google Scholar 

  • Sonoke S, Ueda T, Fujiwara K et al (2008) Tumor regression in mice by delivery of Bcl-2 small interfering RNA with pegylated cationic liposomes. Cancer Res 68:8843–8851

    Article  PubMed  CAS  Google Scholar 

  • Stavropoulou V, Brault L, Schwaller J (2010) Insights into molecular pathways for targeted therapeutics in acute leukemia. Swiss Med Wkly 140:w13068

    PubMed  Google Scholar 

  • Stein CA, Cheng YC (1993) Antisense oligonucleotides as therapeutic agents—is the bullet really magical? Science 261:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Stein CA, Cohen JS (1988) Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res 48:2659–2668

    PubMed  CAS  Google Scholar 

  • Stenvang J, Kauppinen S (2008) MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 8:59–81

    Article  PubMed  CAS  Google Scholar 

  • Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 75:285–288

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Suda K, Liu D (2008) Computer-assisted hydrodynamic gene delivery. Mol Ther 16:1098–1104

    Article  PubMed  CAS  Google Scholar 

  • Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    Article  PubMed  CAS  Google Scholar 

  • Sur S, Pagliarini R, Bunz F et al (2009) A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci USA 106:3964–3969

    Article  PubMed  CAS  Google Scholar 

  • Sutphin PD, Chan DA, Li JM et al (2007) Targeting the loss of the von Hippel-Lindau tumor suppressor gene in renal cell carcinoma cells. Cancer Res 67:5896–5905

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  PubMed  CAS  Google Scholar 

  • Takei Y, Nemoto T, Mu P et al (2008) In vivo silencing of a molecular target by short interfering RNA electroporation: tumor vascularization correlates to delivery efficiency. Mol Cancer Ther 7:211–221

    Article  PubMed  CAS  Google Scholar 

  • Takeshita F, Minakuchi Y, Nagahara S et al (2005) Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA 102:12177–12182

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Wagner M (2006) Antisense therapy in clinical oncology: preclinical and clinical experiences. Mol Biotechnol 33:221–238

    Article  PubMed  CAS  Google Scholar 

  • Trougakos IP, Lourda M, Antonelou MH et al (2009) Intracellular clusterin inhibits mitochondrial apoptosis by suppressing p53-activating stress signals and stabilizing the cytosolic Ku70-Bax protein complex. Clin Cancer Res 15:48–59

    Article  PubMed  CAS  Google Scholar 

  • Turcotte S, Chan DA, Sutphin PD et al (2008) A molecule targeting VHL-deficient renal cell carcinoma that induces autophagy. Cancer Cell 14:90–102

    Article  PubMed  CAS  Google Scholar 

  • Tutt A, Robson M, Garber JE et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–244

    Article  PubMed  CAS  Google Scholar 

  • Urban-Klein B, Werth S, Abuharbeid S et al (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12:461–466

    Article  PubMed  CAS  Google Scholar 

  • Usman N, Blatt LM (2000) Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J Clin Invest 106:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Varkouhi AK, Mountrichas G, Schiffelers RM et al (2012) Polyplexes based on cationic polymers with strong nucleic acid binding properties. Eur J Pharm Sci 45:459–466

    Google Scholar 

  • Venturini L, Battmer K, Castoldi M et al (2007) Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109:4399–4405

    Article  PubMed  CAS  Google Scholar 

  • Vickers TA, Wyatt JR, Burckin T et al (2001) Fully modified 2′ MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 29:1293–1299

    Article  PubMed  CAS  Google Scholar 

  • Villalona-Calero MA, Ritch P, Figueroa JA et al (2004) A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-alpha, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res 10:6086–6093

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  • Wang Z (2011) The concept of multiple-target anti-miRNA antisense oligonucleotide technology. Methods Mol Biol 676:51–57

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen P, Mrkobrada M et al (2003) Antisense imaging of epidermal growth factor-induced p21(WAF-1/CIP-1) gene expression in MDA-MB-468 human breast cancer xenografts. Eur J Nucl Med Mol Imaging 30:1273–1280

    Article  PubMed  Google Scholar 

  • Wang Y, Decker SJ, Sebolt-Leopold J (2004) Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther 3:305–313

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ngo VN, Marani M et al (2010) Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29:4658–4670

    Article  PubMed  CAS  Google Scholar 

  • Weidle UH, Maisel D, Eick D (2011) Synthetic lethality-based targets for discovery of new cancer therapeutics. Cancer Genomics Proteomics 8:159–171

    PubMed  CAS  Google Scholar 

  • Whitehurst AW, Bodemann BO, Cardenas J et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  PubMed  CAS  Google Scholar 

  • Whitehurst AW, Xie Y, Purinton SC et al (2010) Tumor antigen acrosin binding protein normalizes mitotic spindle function to promote cancer cell proliferation. Cancer Res 70:7652–7661

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM 3rd, Simeonov A (2010) Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 67:3621–3631

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Lima WF, Zhang H et al (2004) Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279:17181–17189

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Liu H, Goga A et al (2010) Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of aurora-B kinase. Proc Natl Acad Sci USA 107:13836–13841

    Article  PubMed  CAS  Google Scholar 

  • Yaron PN, Holt BD, Short PA et al (2011) Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J Nanobiotechnology 9:45

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Betts C, Saleh AF et al (2010) Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse. Mol Ther 18:819–827

    Article  PubMed  CAS  Google Scholar 

  • Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    Article  PubMed  CAS  Google Scholar 

  • Yu RZ, Geary RS, Leeds JM et al (2001) Comparison of pharmacokinetics and tissue disposition of an antisense phosphorothioate oligonucleotide targeting human Ha-ras mRNA in mouse and monkey. J Pharm Sci 90:182–193

    Article  PubMed  CAS  Google Scholar 

  • Zaghloul EM, Viola JR, Zuber G et al (2010) Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine. Mol Pharm 7:652–663

    Article  PubMed  CAS  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75:280–284

    Article  PubMed  CAS  Google Scholar 

  • Zellweger T, Miyake H, Cooper S et al (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy)ethyl chemistry. J Pharmacol Exp Ther 298:934–940

    PubMed  CAS  Google Scholar 

  • Zellweger T, Kiyama S, Chi K et al (2003) Overexpression of the cytoprotective protein clusterin decreases radiosensitivity in the human LNCaP prostate tumour model. BJU Int 92:463–469

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Budker V, Williams P et al (2001) Efficient expression of naked dna delivered intraarterially to limb muscles of nonhuman primates. Hum Gene Ther 12:427–438

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Dong X, Sawyer GJ et al (2004a) Regional hydrodynamic gene delivery to the rat liver with physiological volumes of DNA solution. J Gene Med 6:693–703

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Wang H, Prasad G et al (2004b) Radiosensitization by antisense anti-MDM2 mixed-backbone oligonucleotide in in vitro and in vivo human cancer models. Clin Cancer Res 10:1263–1273

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Jia X, Li H et al (2011) New tumor-targeted nanosized delivery carrier for oligonucleotides: characteristics in vitro and in vivo. Int J Nanomedicine 6:1527–1534

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christine Di Cresce or Peter J. Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Cresce, C. et al. (2012). Antisense Technology: From Unique Laboratory Tool to Novel Anticancer Treatments. In: Erdmann, V., Barciszewski, J. (eds) From Nucleic Acids Sequences to Molecular Medicine. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27426-8_7

Download citation

Publish with us

Policies and ethics