Skip to main content

Temporal Instabilities in Cathodic Processes at Liquid and Solid Electrodes

  • Chapter
  • First Online:
Self-Organization in Electrochemical Systems I

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1224 Accesses

Abstract

Experimental examples and theoretical models of the oscillatory and mutistable behavior in cathodic processes of various species, studied at both liquid (mercury) and solid electrodes, are described. The following processes with the N-NDR characteristics are analyzed: (1) electroreduction of S2O 2−8 ions on mercury and solid (polycrystalline and single crystal) metal electrodes, under conditions when the Frumkin effect of the electric double layer is (or is not) operating; (2) electroreduction of IO 3 ions on polycrystalline Ag electrode, considered as an HN-NDR type oscillator due to the existence of an additional current carrier; (3) polarographic reduction of In(III)–SCN complexes; (4) electroreduction of the Ni(II)–SCN complexes at mercury electrodes, including novel application of the streaming Hg electrode; (5) electroreduction of the Ni(II)–N 3 complexes at a streaming mercury electrode, exhibiting rarely reported phenomenon of tristability; (6) polarographic electroreduction of Cu2+ in the presence of adsorbed inhibitor (“the inhibitor oscillator”); (7) electroreduction of H2O2 on metal (Ag, Au, Pt) polycrystalline and single-crystal electrodes, including suggestions for a new type of electrochemical oscillator (coupled NDR, CNDR), extending the classification scheme given in Sect. 3.5; (8) electroreduction of H2O2 on Cu-based and GaAs semiconductor electrodes, indicating the specific role of semiconducting phase played only in the latter case. Experimental and model results include both dc and ac (impedance) characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since x 2 is usually much smaller than the thickness of the diffusion layer, \( {\it c_{\rm{ox}}}{\hskip -7pt^{\rm b}} \) is considered a “surface concentration”, generally dependent on time t, and in diffusion-oriented problems is usually presented in the notation: \( {c_{\rm{ox}}}(0,t) \). Thus, here \( {\it c_{\rm{ox}}}{\hskip -7pt^{\rm b}} \approx {c_{\rm{ox}}}({\rm 0},t)[2] \).

References

  1. Frumkin AN (1933) Wasserstoffüberspannung und Struktur der Doppelschicht. Z physik Chem 164A:121–133

    Google Scholar 

  2. Bard AJ, Faulkner L (2001) Electrochemical methods. Fundamentals and applications. Wiley, New York

    Google Scholar 

  3. Parsons R (1961) The structure of the electrical double layer and its influence on the rates of electrode reactions. Adv Electrochem Electrochem Eng 1:1–64

    CAS  Google Scholar 

  4. Galus Z (1994) Fundamentals of electrochemical analysis, 2nd edn. Ellis Horwood, New York

    Google Scholar 

  5. Frumkin AN, Petri OA, Nikolaeva-Fedorovitch NV (1961) Current-time curves of reduction of anions at the dropping electrode. Dokl Akad Nauk SSSR 136:1158–1161 (in Russian)

    CAS  Google Scholar 

  6. Frumkin A, Nikolayeva-Fedorovich N, Ivanova R (1959) The influence of surface active anions on the electroreduction of the persulphate anion at negative potentials. Can J Chem 37:253–256

    Article  CAS  Google Scholar 

  7. Fawcett WR, Levine S (1973) Discreteness-of-charge effects in electrode kinetics. J Electroanal Chem 43:175–184

    Article  CAS  Google Scholar 

  8. Gokhstein AY, Frumkin AN (1960) Autooscillations in reduction of S2O 2-8 anions on mercury. Dokl Akad Nauk SSSR 132:388–391 (in Russian)

    Google Scholar 

  9. Wolf W, Ye J, Purgand M, Eiswirth M, Doblhofer K (1992) Modeling the oscillating electrochemical reduction of peroxodisulfate. Ber Bunsenges Phys Chem 96:1797–1804

    Article  CAS  Google Scholar 

  10. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  11. Desilvestro J, Weaver MJ (1987) Redox mediation involving oxide films as examined by surface-enhanced Raman spectroscopy: peroxodisulfate reduction at oxide-modified gold electrodes. J Electroanal Chem 234:237–249

    Article  CAS  Google Scholar 

  12. Samec Z, Doblhofer K (1994) Mechanism of peroxodisulfate reduction at a polycrystalline gold electrode. J Electroanal Chem 367:141–147

    Article  CAS  Google Scholar 

  13. Müller L (1967) Über die beschleunigende Wirkung von Pt-oberflächen-oxiden auf die Geschwindigkeit der kathodischen Reduktion von S2O 2−8 an einer Pt-elektrode in alkalischer Lösung. J Electroanal Chem 13:275–279

    Article  Google Scholar 

  14. Müller L, Wetzel R, Otto H (1970) Die Bestimmung des Bedeckungsgrades von S2O 2−8 und Jodat an Platin. J Electroanal Chem 24:175–185

    Article  Google Scholar 

  15. Samec Z, Bittner AM, Doblhofer K (1996) Electrocatalytic reduction of peroxodisulfate anion on Au(111) in acidic aqueous solutions. J Electroanal Chem 409:165–173

    Article  Google Scholar 

  16. Samec Z, Bittner AM, Doblhofer K (1997) Origin of electrocatalysis in the reduction of peroxodisulfate on gold electrodes. J Electroanal Chem 432:205–214

    Article  CAS  Google Scholar 

  17. Cahan BD, Villulas HM, Yeager ER (1991) The effects of trace anions on the voltammetry of single crystal gold surfaces. J Electroanal Chem 306:213–238

    Article  CAS  Google Scholar 

  18. Shi Z, Lipkowski J, Gamboa M, Zelenay P, Wieckowski A (1994) Investigations of SO 2−4 adsorption at the Au(111) electrode by chronocoulometry and radiochemistry. J Electroanal Chem 366:317–326

    Article  CAS  Google Scholar 

  19. Shi Z, Lipkowski J, Mirwald S, Pettinger B (1995) Electrochemical and second harmonic generation study of SO 2−4 adsorption at the Au(111) electrode. J Electroanal Chem 396:115–124

    Article  Google Scholar 

  20. Koper MTM (1996) Mixed-mode oscillations in the peroxodisulfate reduction on platinum and gold rotating disk electrodes. Ber Bunsenges phys Chem 100:497–500

    Article  CAS  Google Scholar 

  21. Treindl L, Doblhofer K, Krischer K, Samec Z (1999) Mechanism of the oscillatory reduction of peroxodisulfate on gold(110) at electrode potentials positive to the point of zero charge. Electrochim Acta 44:3963–3967

    Article  CAS  Google Scholar 

  22. Samec Z, Krischer K, Doblhofer K (2001) Reduction of peroxodisulfate on gold(111) covered by surface oxides: inhibition and coupling between two oxide reduction processes. J Electroanal Chem 499:129–135

    Article  CAS  Google Scholar 

  23. Nakanishi S, Sakai S, Hatou M, Mukouyama Y, Nakato Y (2002) Oscillatory peroxodisulfate reduction on Pt and Au electrodes under high ionic strength conditions, caused by the catalytic effect of adsorbed OH. J Phys Chem B 106:2287–2293

    Article  CAS  Google Scholar 

  24. Nakanishi S, Mukouyama Y, Karasumi K, Imanishi A, Furuya N, Nakato Y (2000) Appearance of an oscillation through the autocatalytic mechanism by control of the atomic-level structure of electrode surfaces in electrochemical H2O2 reduction at Pt electrodes. J Phys Chem B 104:4181–4188

    Article  CAS  Google Scholar 

  25. Strasser P, Eiswirth M, Koper MTM (1999) Mechanistic classification of electrochemical oscillators – an operational experimental strategy. J Electroanal Chem 478:50–66

    Article  CAS  Google Scholar 

  26. Strasser P, Lübke M, Eickes C, Eiswirth M (1999) Modeling galvanostatic potential oscillations in the electrocatalytic iodate reduction system. J Electroanal Chem 462:19–33

    Article  CAS  Google Scholar 

  27. Holleman A, Wiberg E (1985) Lehrbuch der Anorganischen Chemie. Walter de Gruyter, New York

    Google Scholar 

  28. Rieger PH (1994) Electrochemistry. Chapman-Hall, New York, p 334

    Book  Google Scholar 

  29. Koper MTM, Sluyters JH (1994) Instabilities and oscillations in simple models of electrocatalytic surface reactions. J Electroanal Chem 371:149–159

    Article  CAS  Google Scholar 

  30. Li Z, Cai J, Zhou S (1997) Potential oscillations during the reduction of Fe(CN) 3-6 ions with convection feedback. J Electroanal Chem 432:111–116

    Article  CAS  Google Scholar 

  31. Li Z, Cai J, Zhou S (1997) Current oscillations in the reduction or oxidation of some anions involving convection mass transfer. J Electroanal Chem 436:195–201

    Article  CAS  Google Scholar 

  32. Li ZL, Yuan QH, Ren B, Xiao XM, Zeng Y, Tian ZQ (2001) A new experimental method to distinguish two different mechanism for a category of oscillators involving mass transfer. Electrochem Commun 3:654–658

    Article  CAS  Google Scholar 

  33. de Levie R (1971) Anion bridging and anion electrocatalysis on mercury. J Electrochem Soc 118:185C–192C, and references cited therein

    Article  Google Scholar 

  34. Turowska M (1984) Catalytic effect of anions undergoing specific adsorption on the electrode on the mechanism and kinetics of electrode reactions. In: Libuś W, Dutkiewicz E (eds) Electrochemistry of interfaces and ionogenic media. PWN, Warsaw (in Polish), pp 183–191 (and references cited therein)

    Google Scholar 

  35. Pospíšil L, de Levie R (1970) Thiocyanate electrocatalysis of the reduction of In(III). J Electroanal Chem 25:245–255

    Article  Google Scholar 

  36. de Levie R (1970) On the electrochemical oscillator. J Electroanal Chem 25:257–273

    Article  Google Scholar 

  37. Jakuszewski B, Turowska M (1973) Voltammetric minima and electrochemical oscillations. J Electroanal Chem 46:399–410

    Article  CAS  Google Scholar 

  38. Rudolph M, Hromadova M, de Levie R (1998) Demystifying the electrochemical oscillator. J Phys Chem A 102:4405–4410

    Article  CAS  Google Scholar 

  39. Engel AJ, Lawson J, Aikens DA (1965) Ligand-catalyzed polarographic reduction of indium(III) for determination of halides and certain organic sulfur and nitrogen compounds. Anal Chem 37:203–207

    Article  CAS  Google Scholar 

  40. Tamamushi R (1966) An “electrochemical oscillator” – an electrochemical system which generates undamped electric oscillation. J Electroanal Chem 11:65–68

    CAS  Google Scholar 

  41. de Levie R, Husovsky AA (1969) On the negative faradaic admittance in the region of the polarographic minimum of In(III) in aqueous NaSCN solution. J Electroanal Chem 22:29–48

    Article  Google Scholar 

  42. de Levie R, Pospíšil L (1969) On the coupling of interfacial and diffusional impedances, and on the equivalent circuit of an electrochemical cell. J Electroanal Chem 22:277–290

    Article  Google Scholar 

  43. Koper MTM, Sluyters JH (1991) Electrochemical oscillators: an experimental study of the indium/thiocyanate oscillator. J Electroanal Chem 303:65–72

    Article  CAS  Google Scholar 

  44. Koper MTM, Sluyters JH (1991) Electrochemical oscillators: their description through a mathematical model. J Electroanal Chem 303:73–94

    Article  CAS  Google Scholar 

  45. Keizer J, Scherson D (1980) A theoretical investigation of electrode oscillations. J Phys Chem 84:2025–2032

    Article  CAS  Google Scholar 

  46. Koper MTM, Gaspard P (1991) Mixed-mode and chaotic oscillations in a simple model of an electrochemical oscillator. J Phys Chem 95:4945–4947

    Article  CAS  Google Scholar 

  47. Koper MTM, Gaspard P, Sluyters JH (1992) A one-parameter bifurcation analysis of the indium/thiocyanate electrochemical oscillator. J Phys Chem 96:5674–5675

    Article  CAS  Google Scholar 

  48. Koper MTM, Gaspard P (1992) The modeling of mixed-mode and chaotic oscillations in electrochemical systems. J Chem Phys 96:7797–7813

    Article  CAS  Google Scholar 

  49. Feldberg SW (1969) Digital simulation: a general method for solving electrochemical diffusion-kinetic problems. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 3. Dekker, New York, pp 199–296

    Google Scholar 

  50. Britz D (2005) Digital simulation in electrochemistry, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  51. Koper MTM (1996) Oscillations and complex dynamical bifurcations in electrochemical systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys XCII:161–298

    Google Scholar 

  52. Koper MTM, Gaspard P, Sluyters JH (1992) Mixed-mode oscillations and incomplete homoclinic scenarios to a saddle focus in the indium/thiocyanate electrochemical oscillator. J Chem Phys 97:8250–8260

    Article  CAS  Google Scholar 

  53. Shil’nikov LP (1965) A case of the existence of a denumerable set of periodic motions. Sov Math Dokl 6:163–166

    Google Scholar 

  54. Koutecký J (1953) Theorie langsamer elektrodenreaktionen in der polarographie und polarographisches verhalten eines systems, bei welchem der depolarisator durch eine schnelle chemische reaktion aus einem elektroinaktiven stoff entsteht 18:597–610

    Google Scholar 

  55. Weber J, Koutecký J (1955) Über die kinetik der elektrodenvorgänge. XV. Tabellen der funktion für den polarographischen strom bei einem depolarisationsvorgang mit vorgeschalteten oder nachfolgenden sehr schnellen monomolekularen chemischen reaktionen 20:980–983

    Google Scholar 

  56. Oldham KB, Parry EP (1968) Use of polarography and pulse-polarography in the determination of the kinetic parameters of totally irreversible electroreductions. Anal Chem 40:65–69

    Article  CAS  Google Scholar 

  57. de Levie R (2003) On some electrochemical oscillators at the mercury|water interface. J Electroanal Chem 552:223–229

    Article  CAS  Google Scholar 

  58. Kariuki S, Dewald HD (1998) Current oscillations in the reduction of indium(III) and gallium(III) in dilute chloride and nitrate solutions at the dropping mercury electrode. Electrochim Acta 43:701–704

    Article  CAS  Google Scholar 

  59. Kariuki S, Dewald HD, Thomas J, Rollins RW (2000) Current oscillations of indium(III) at a dropping mercury electrode. J Electroanal Chem 486:175–180

    Article  CAS  Google Scholar 

  60. Krogulec T, Barański A, Galus Z (1979) The electrode kinetics of nickel in thiocyanate solutions at mercury electrodes. J Electroanal Chem 100:791–800

    Article  CAS  Google Scholar 

  61. Jurczakowski R, Orlik M (1999) On the source of oscillatory instabilities in the electroreduction of thiocyanate complexes of nickel(II) at mercury electrodes. J Electroanal Chem 478:118–127

    Article  CAS  Google Scholar 

  62. Tamamushi R, Matsuda K (1966) Experimental studies of negative resistance of galvanic cells and the undamped electric oscillation generated by electrochemical oscillators. J Electroanal Chem 12:436–442

    CAS  Google Scholar 

  63. Koper MTM, Sluyters JH (1993) On the mathematical unification of a class of electrochemical oscillators and their design procedures. J Electroanal Chem 352:51–64

    Article  CAS  Google Scholar 

  64. Krogulec T, Barański A, Galus Z (1974) On the formation of sulphides in the electroreduction of thiocyanate complexes of nickel(II) at mercury electrodes. J Electroanal Chem 57:63–75

    Article  CAS  Google Scholar 

  65. Krogulec T, Galus Z (1981) On the electroduction of thiocyanates bound to Ni(II). J Electroanal Chem 117:109–118

    Article  CAS  Google Scholar 

  66. Jurczakowski R, Orlik M (2000) The oscillatory course of the electroreduction of thiocyanate complexes of nickel(II) at mercury electrodes – experiment and simulation. J Electroanal Chem 486:65–74

    Article  CAS  Google Scholar 

  67. Orlik M (1998) Digital simulation of electrochemical oscillations and associated reagents concentration profiles with the finite differences method. Pol J Chem 72:2272–2293

    CAS  Google Scholar 

  68. Kristiansen GK (1963) Zero of arbitrary function. BIT 3:205–207

    Google Scholar 

  69. Bieniasz LK, Britz D (2004) Recent developments in digital simulation of electroanalytical experiments. Pol J Chem 78:1195–1219

    CAS  Google Scholar 

  70. Orlik M (2005) An improved algorithm for the numerical simulation of cyclic voltammetric curves affected by the ohmic potential drops and its application to the kinetics of bis(biphenyl)chromium(I) electroreduction. J Electroanal Chem 575:281–286

    Article  CAS  Google Scholar 

  71. Fuchs G, Kišova L, Komenda J, Gritzner G (2002) The influence of tetraethylammonium perchlorate on the electrode kinetics of Eu3+ in dimethylsulfoxide. J Electroanal Chem 526:107–114

    Article  CAS  Google Scholar 

  72. Jurczakowski R, Orlik M (2002) Bistable/oscillatory system based on the electroreduction of thiocyanate complexes of Nikel(II) at a streaming mercury electrode. Experiment and simulation. J Phys Chem B 106:1058–1065

    Article  CAS  Google Scholar 

  73. Galus Z (ed) (1979) Electroanalytical methods of determination of physico-chemical constants. PWN, Warsaw, pp 64–67 (in Polish)

    Google Scholar 

  74. Koryta J (1954) Diffusion and kinetic currents at the streaming mercury electrode. Collect Czechoslov Chem Commun 19:433–442

    CAS  Google Scholar 

  75. Weaver JR, Parry RW (1954) Reduction at the streaming mercury electrode. I. The limiting current. J Am Chem Soc 76:6258–6262

    Article  CAS  Google Scholar 

  76. Weaver JR, Parry RW (1956) Reduction at the streaming mercury electrode. II. Current-voltage curves. J Am Chem Soc 78:5542–5550

    Article  CAS  Google Scholar 

  77. Delahay P (1965) Electrode kinetics at open circuit at the streaming mercury electrode: I. Theory. J Electroanal Chem 10:1–7

    CAS  Google Scholar 

  78. Orlik M, Jurczakowski R (2002) On the stability of nonequilibrium steady-states for the electrode processes at a streaming mercury electrode. J Phys Chem B 106:7527–7536

    Article  CAS  Google Scholar 

  79. Orlik M, Jurczakowski R (2004) On the role of specific characteristics of the streaming mercury electrode in the generation of the nonlinear electrochemical dynamical phenomena. Polish J Chem 78:1221–1234

    CAS  Google Scholar 

  80. Jurczakowski R, Orlik M (2007) Experimental and theoretical impedance studies of oscillations and bistability in the Ni(II)–SCN electroreduction at the streaming mercury electrode. J Electroanal Chem 605:41–52

    Article  CAS  Google Scholar 

  81. Jurczakowski R, Orlik M (2003) Experimental and theoretical studies of the multistability in the electroreduction of the nickel(II)-N 3 complexes at a streaming mercury electrode. J Phys Chem B 107:10148–10158

    Article  CAS  Google Scholar 

  82. Kutner W, Galus Z (1974) Electrode reactions of nickel(II) at mercury electrodes in aqueous solutions of azides. J Electroanal Chem 51:363–376

    Article  CAS  Google Scholar 

  83. Maggio F, Romano V, Pellerito L (1967) Potentiometric studies on the nickel(II)-azide complex system. J Electroanal Chem 15:227–230

    Article  CAS  Google Scholar 

  84. Senise P, Godinho OES (1970) Spectrophotometric study of cobalt(II) and nickel(II) monoazido complexes in aqueous solution. J Inorg Nucl Chem 32:3641–3645

    Article  CAS  Google Scholar 

  85. Jurczakowski R, Orlik M (2005) The electroreduction of azides bound to nickel(II) ions in weak acidic media. J Electroanal Chem 574:311–320

    Article  CAS  Google Scholar 

  86. Orlik M, Jurczakowski R (2008) The kinetic parameters of the electrocatalytic reduction of the coordinated azide anions found from comparison of dc and ac measurements for the tristable Ni(II)-N -3 system. J Electroanal Chem 614:139–148

    Article  CAS  Google Scholar 

  87. Jehring H, Kürschner U (1974) Der elektrochemische Elektrosorptions-Inhibitions-Oszillator als neues Biomembran Model. Studia Biophysica, Berlin 42:225–228

    CAS  Google Scholar 

  88. Jehring H, Kürschner U (1975) Durch Spannungsimpulse eines Elektrosorptions-oszillators hervorgerufene Eigenschaftensänderungen mit Hysterese in Elektrosorptionsschichten (Biomembranmodell der Informationsaufnahme und Speicherung). Studia Biophysica, Berlin 48:81–84

    CAS  Google Scholar 

  89. Jehring H, Kuerschner U (1977) Elektrochemische Oszillationen bei der inhibierten Kupferabscheidung an der Quecksilberelektrode. J Electroanal Chem 75:799–808

    Article  CAS  Google Scholar 

  90. Dörfler HD, Müller E (1982) The analysis of current oscillations on the basis of the retardation of electrode processes by different surfactants. J Electroanal Chem 135:37–53

    Article  Google Scholar 

  91. Dörfler HD (1989) Elektrochemische Oscillationserscheinungen durch inhibierte Elektrodenreaktionen. Nova acta Leopoldina NF 61:25–49

    Google Scholar 

  92. Treindl L’, Olexová A (1983) Electrochemical oscillations of the system Hg|HSO -4 |BrO -3 and phenol. Electrochim Acta 28:1495–1499

    Article  CAS  Google Scholar 

  93. Olexová A, Treindl L’ (1984) Electrochemical oscillations of the system Hg|HSO -4 |BrO -3 . Chem zvesti 38:145–150

    Google Scholar 

  94. Schlegel JM, Paretti RF (1992) An electrochemical oscillator: the mercury/chloropentammine cobalt(III) oscillator. J Electroanal Chem 335:67–74

    Article  CAS  Google Scholar 

  95. Hudson JL, Tsotsis TT (1994) Electrochemical reaction dynamics: a review. Chem Eng Sci 49:1493–1572

    Article  CAS  Google Scholar 

  96. Honda M, Kodera T, Kita H (1986) Electrochemical behavior of H2O2 at Ag in HClO4 aqueous solutions. Electrochim Acta 31:377–383

    Article  CAS  Google Scholar 

  97. Flätgen G, Wasle G, Lübke M, Eickes C, Radhakrishnan G, Doblhofer K, Ertl G (1999) Autocatalytic mechanism of H2O2 reduction on Ag electrodes in acidic electrolyte: experiments and simulations. Electrochim Acta 44:4499–4506

    Article  Google Scholar 

  98. Štrbac S, Adžić RR (1992) Oscillatory phenomena in oxygen and hydrogen peroxide reduction on the Au(100) electrode surface in alkaline solutions. J Electroanal Chem 337:355–364

    Article  Google Scholar 

  99. Tributsch H (1975) Sustained oscillations during catalytic reduction of hydrogen peroxide on copper-iron-sulfide electrodes I. Ber Bunsenges Phys Chem 79:570–579

    Article  CAS  Google Scholar 

  100. Fetner N, Hudson JL (1990) Oscillations during the electrocatalytic reduction of hydrogen peroxide on a platinum electrode. J Phys Chem 94:6506–6509

    Article  CAS  Google Scholar 

  101. van Venrooij TGJ, Koper MTM (1995) Bursting and mixed-mode oscillations during the hydrogen peroxide reduction on a platinum electrode. Electrochim Acta 40:1689–1696

    Article  Google Scholar 

  102. Mukouyama Y, Nishimura T, Nakanishi S, Nakato Y (2000) Roles of local deviations and fluctuations of the Helmholtz-layer potential in transitions from stationary to oscillatory current in an “H2O2 – acid – Pt” electrochemical system. J Phys Chem B 104:11186–11194

    Article  CAS  Google Scholar 

  103. Nakanishi S, Mukouyama Y, Nakato Y (2001) Catalytic effect of adsorbed iodine atoms on hydrogen peroxide reduction at single-crystal Pt electrodes, causing enhanced current oscillations. J Phys Chem B 105:5751–5756

    Article  CAS  Google Scholar 

  104. Mukouyama Y, Nakanishi S, Chiba T, Murakoshi K, Nakato Y (2001) Mechanisms of two electrochemical oscillations of different types, observed for H2O2 reduction on a Pt electrode in the presence of a small amount of halide ions. J Phys Chem B 105:7246–6253

    Article  CAS  Google Scholar 

  105. Mukouyama Y, Nakanishi S, Konishi H, Ikeshima Y, Nakato Y (2001) New-type electrochemical oscillation caused by electrode-surface inhomogeneity and electrical coupling as well as solution stirring through electrochemical gas evolution reaction. J Phys Chem B 105:10905–10911

    Article  CAS  Google Scholar 

  106. Cattarin S, Tributsch H (1988) Light-sustained cooperative mechanisms observed at liquid junctions of chalcopyrite semiconductors. Chem Phys Lett 148:221–225

    Article  CAS  Google Scholar 

  107. Tributsch H (1975) Sustained oscillations during catalytic reduction of hydrogen peroxide on copper-iron-sulfide electrodes II. Ber Bunsenges Phys Chem 79:580–587

    Article  CAS  Google Scholar 

  108. Tributsch H, Bennett JC (1976) Hydrogen peroxide induced periodical catalysis on copper-containing sulfides. Ber Bunsenges phys Chem 80:321–327

    Article  CAS  Google Scholar 

  109. Cattarin TH (1990) Interfacial reactivity and oscillating behavior of chalcopyrite cathodes during H2O2 reduction I. Electrochemical phenomena. J Electrochem Soc 137:3475–3483

    Article  CAS  Google Scholar 

  110. Cattarin S, Fletcher S, Pettenkofer C, Tributsch H (1990) Interfacial reactivity and oscillating behavior of chalcopyrite cathodes during H2O2 reduction. II. Characterization of electrode corrosion. J Electrochem Soc 137:3484–3493

    Article  CAS  Google Scholar 

  111. Cattarin S, Tributsch H (1992) Reduction of H2O2 at CuInSe2 (photo)cathodes II. Sustained and triggered oscillations. J Electrochem Soc 139:1328–1332

    Article  CAS  Google Scholar 

  112. Cattarin S, Tributsch H (1993) Non-linear and pulse phenomena during H2O2 reduction at chalcopyrite (photo)cathodes. Electrochim Acta 38:115–122

    Article  CAS  Google Scholar 

  113. Cattarin S, Tributsch H, Stimming U (1992) Reduction of H2O2 at CuInSe2 (photo)cathodes I. Characterization of the electrode-electrolyte interface. J Electrochem Soc 139:1320–1328

    Article  CAS  Google Scholar 

  114. Pohlmann L, Neher G, Tributsch H (1994) A model for oscillating hydrogen liberation at CuInSe2 in the presence of H2O2. J Phys Chem 98:11007–11010

    Article  CAS  Google Scholar 

  115. Koper MTM, Meulenkamp EA, Vanmaekelbergh D (1993) Oscillatory behavior of the H2O2 reduction at GaAs semiconductor electrodes. J Phys Chem 97:7337–7341

    Article  CAS  Google Scholar 

  116. Memming R (1969) Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide. J Electrochem Soc 116:785–790

    Article  CAS  Google Scholar 

  117. Minks BP, Vanmaekelbergh D, Kelly JJ (1989) Current-doubling, chemical etching and the mechanism of two-electron reduction reactions at GaAs: Part 2. A unified model. J Electroanal Chem 273:133–145

    Article  CAS  Google Scholar 

  118. Koper MTM, Vanmaekelbergh D (1995) The origin of oscillations during hydrogen peroxide reduction on GaAs semiconductor electrodes. J Phys Chem 99:3687–3696

    Article  CAS  Google Scholar 

  119. Morrison SR (1990) Electrochemistry at semiconductors and oxidized metal electrodes. Plenum, New York

    Google Scholar 

  120. Koper MTM, Chaparro AM, Tributsch H, Vanmaekelbergh D (1998) Langmuir 14:3926–3931

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Orlik, M. (2012). Temporal Instabilities in Cathodic Processes at Liquid and Solid Electrodes. In: Self-Organization in Electrochemical Systems I. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27673-6_4

Download citation

Publish with us

Policies and ethics