Skip to main content

Multimillion Atom Simulation of Electronic and Optical Properties of Nanoscale Devices Using NEMO 3-D

  • Living reference work entry
  • First Online:
  • 383 Accesses

Definition of the Subject and Its Importance

The rapid progress in nanofabrication technologies has led to the emergence of new classes of nanodevices and structures which are expected to bring about fundamental and revolutionary changes in electronic, photonic, computation, information processing, biotechnology, and medical industries. At the atomic scale of novel nanostructured semiconductors, the distinction between new device and new material is blurred, and device physics and material science meet. The quantum mechanical effects in the electronic states of the device and the granular, atomistic representation of the underlying material become important. Modeling and simulation approaches based on a continuum representation of the underlying material typically used by device engineers and physicists become invalid. Typical ab initio methods used by material scientists do not represent the bandgaps and masses precisely enough for device design or they do not scale to realistically...

This is a preview of subscription content, log in via an institution.

Abbreviations

Atomistic simulation:

For device sizes in the range of tens of nanometers, the atomistic granularity of constituent materials cannot be neglected. Effects of atomistic strain, surface roughness, unintentional doping, the underlying crystal symmetries, or distortions of the crystal lattice can have a dramatic impact on the device operation and performance. In an atomistic simulation, one takes into account both the atomistic/granular and quantum properties of the underlying nanostructure.

Bandstructure:

Bandstructure of a solid originates from the wave nature of particles and depicts the allowed and forbidden energy states of electrons in the material. The knowledge of the bandstructure is the first and essential step toward the understanding of the device operation and reliable device design for semiconductor devices. Bandstructure is based on the assumption of an infinitely extended (bulk) material without spatial fluctuations (outside a simple repeated unit cell). For nanometer-scale devices with spatial variations on the atomic scale, the traditional concept of bandstructure is called into question.

nanoHUB:

The nanoHUB is a rich, Web-based resource for research, education, and collaboration in nanotechnology (http://www.nanoHUB.org). It was created by the NSF-funded Network for Computational Nanotechnology (NCN) with a vision to pioneer the development of nanotechnology from science to manufacturing through innovative theory, exploratory simulation, and novel cyberinfrastructure. The nanoHUB offers online nanotechnology simulation tools which one can freely access from his/her Web browser.

Nanostructures:

Nanostructures have at least two physical dimensions of size less than 100 nm. Their size lies between atomic/molecular and microscopic structures/particles. Realistically sized nanostructures are usually composed of millions of atoms. These devices demonstrate new capabilities and functionalities where the quantum nature of charge carriers plays an important role in determining the overall device properties and performance.

NEMO 3D:

NEMO 3D stands for Nanoelectronic Modeling in three dimensions. This versatile, open-source software package currently allows calculating single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells, and nanocrystals.

Piezoelectricity:

A variety of advanced materials of interest, such as GaAs, InAs, and GaN, are piezoelectric. Piezoelectricity arises due to charge imbalances on the bonds between atoms. Modifications of the bond angles or distances result in alterations in charge imbalance. Any spatial nonsymmetric distortion/strain in nanostructures made of these materials will create piezoelectric fields, which may significantly modify the electrostatic potential landscape.

Quantum dots:

Quantum dots (QDs) are solid-state nanostructures that provide confinement of charge carriers (electrons, holes, excitons) in all three spatial dimensions typically on the nanometer scale. This work focuses on semiconductor-based quantum dots.

Rappture:

Rappture (http://www.rappture.org) is a software toolkit that supports and enables the rapid development of graphical user interfaces (GUIs) for different applications. It is developed by the Network for Computational Nanotechnology at Purdue University, West Lafayette.

Spontaneous (pyroelectric) polarization:

The intrinsic asymmetry of the bonding in the equilibrium (unstrained) crystal structure leads to a spontaneous polarization in wurtzite III-N structures even in the absence of external electrical fields. Spontaneous polarization is strain independent and results in a built-in potential that, in many nitride nanostructures, becomes comparable to the piezoelectric counterpart.

Strain:

Strain is the deformation caused by the action of stress on a physical body. In nanoelectronic devices, strain typically originates from the assembly of lattice-mismatched semiconductors. Strain can be atomistically inhomogeneous, and a small mechanical distortion of 2–5 % can strongly modify the energy spectrum, in particular, the optical bandgap, of the system by 30–100 %.

Tight binding:

Tight binding is an empirical model that enables calculation of single-particle energies and wave functions in a solid. The essential idea is the representation of the electronic states of the valence electrons with a local basis that contains the critical physical elements needed. The basis may contain orthogonal s, p, and d orbitals on one atom that connect/talk to orbitals of a neighboring atom. The connection between atoms and the resulting overlapping wave functions form the bandstructure of a solid.

Bibliography

Primary Literature

  • Agnello PD (2002) Process requirements for continued scaling of CMOS – the need and prospects for atomic-level manipulation. IBM J Res Dev 46:317–338

    Article  Google Scholar 

  • Ahmed S, Usman M, Heitzinger C, Rahman R, Schliwa A, Klimeck G (2007) Atomistic simulation of non-degeneracy and optical polarization anisotropy in zincblende quantum dots. In: The 2nd annual IEEE international conference on nano/micro engineered and molecular systems (IEEE-NEMS), Bangkok

    Google Scholar 

  • Ahmed S, Islam S, Mohammed S (2010) Electronic structure of InN/GaN quantum dots: multimillion atom tight-binding simulations. IEEE Trans Electron Devices 57:164–173

    Article  ADS  Google Scholar 

  • Arakawa Y, Sasaki H (1982) Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett 40:939

    Article  ADS  Google Scholar 

  • Bae H, Clark S, Haley B, Klimeck G, Korkusinski M, Lee S, Naumov M, Ryu H, Saied F (2007) Electronic structure computations of quantum dots with a billion degrees of freedom. Supercomputing 07, Reno

    Google Scholar 

  • Bester G, Zunger A (2005) Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys Rev B 71:045318. Also see references therein

    Article  ADS  Google Scholar 

  • Bester G, Wu X, Vanderbilt D, Zunger A (2006a) Importance of second-order piezoelectric effects in zinc-blende semiconductors. Phys Rev Lett 96:187602

    Article  ADS  Google Scholar 

  • Bester G, Zunger A, Wu X, Vanderbilt D (2006b) Effects of linear and nonlinear piezoelectricity on the electronic properties of InAs/GaAs quantum dots. Phys Rev B 74:081305

    Article  ADS  Google Scholar 

  • Bowen R, Klimeck G, Lake R, Frensley W, Moise T (1997) Quantitative resonant tunneling diode simulation. J Appl Phys 81:207

    Article  Google Scholar 

  • Boykin T, Klimeck G (2005) Practical application of zone-folding concepts in tight-binding. Phys Rev B 71:115215

    Article  ADS  Google Scholar 

  • Boykin T, Vogl P (2001) Dielectric response of molecules in empirical tight-binding theory. Phys Rev B 65:035202

    Article  ADS  Google Scholar 

  • Boykin T, Bowen R, Klimeck G (2001) Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys Rev B 63:245314

    Article  ADS  Google Scholar 

  • Boykin T, Klimeck G, Bowen R, Oyafuso F (2002) Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys Rev B 66:125207

    Article  ADS  Google Scholar 

  • Boykin T, Klimeck G, Oyafuso F (2004a) Valence band effective mass expressions in the sp3d5s* empirical tight-binding model applied to a new Si and Ge parameterization. Phys Rev B 69:115201

    Article  ADS  Google Scholar 

  • Boykin T, Klimeck G, Eriksson M, Friesen M, Coppersmith S, Allmen P, Oyafuso F, Lee S (2004b) Valley splitting in strained Si quantum wells. Appl Phys Lett 84:115

    Article  ADS  Google Scholar 

  • Boykin T, Klimeck G, Eriksson M, Friesen M, Coppersmith S, Allmen P, Oyafuso F, Lee S (2004c) Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models. Phys Rev B 70:165325

    Article  ADS  Google Scholar 

  • Boykin T, Klimeck G, Allmen P, Lee S, Oyafuso F (2005) Valley-splitting in V-shaped quantum wells. J Appl Phys 97:113702

    Article  ADS  Google Scholar 

  • Boykin T, Luisier M, Schenk A, Kharche N, Klimeck G (2007a) The electronic structure and transmission characteristics of disordered AlGaAs nanowires. IEEE Trans Nanotechnol 6:43

    Article  ADS  Google Scholar 

  • Boykin T, Kharche N, Klimeck G (2007b) Brillouin zone unfolding of perfect supercells composed of non-equivalent primitive cells. Phys Rev B 76:035310

    Article  ADS  Google Scholar 

  • Boykin T, Kharche N, Klimeck G, Korkusinski M (2007c) Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J Phys Condens Matter 19:036203

    Article  ADS  Google Scholar 

  • Boykin TB, Luisier M, Klimeck G, Jiang X, Kharche N, Zhou Y, Nayak SK (2011) Accurate six-band nearest-neighbor tight-binding model for the π-bands of bulk graphene and graphene nanoribbons. J Appl Phys 109:10434

    Article  Google Scholar 

  • Bradbury F et al (2006) Stark tuning of donor electron spins in silicon. Phys Rev Lett 97:176404

    Article  ADS  Google Scholar 

  • Calderón MJ, Koiler B, Hu X, Das Sarma S (2006) Quantum control of donor electrons at the Si-SiO2 interface. Phys Rev Lett 96:096802

    Article  ADS  Google Scholar 

  • Canning A, Wang LW, Williamson A, Zunger A (2000) Parallel empirical pseudopotential electronic structure calculations for million atom systems. J Comp Phys 160:29

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Gein AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109

    Article  ADS  Google Scholar 

  • Chen P, Piermarocchi C, Sham L (2001) Control of exciton dynamics in nanodots for quantum operations. Phys Rev Lett 87:067401

    Article  ADS  Google Scholar 

  • Chen J-H, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206

    Article  Google Scholar 

  • Colinge JP (2004) Multipole-gate SOI MOSFETs. Solid State Electron 48:897–905

    Article  ADS  Google Scholar 

  • Cui Y, Lauhon L, Gudiksen M, Wang J, Lieber C (2001) Diameter-controlled synthesis of single-crystal silicon nanowire. Appl Phys Lett 78:2214

    Article  ADS  Google Scholar 

  • Debernardi A et al (2006) Computation of the Stark effect in P impurity states in silicon. Phys Rev B 74:035202

    Article  ADS  Google Scholar 

  • Dobers M, Klitzing K, Schneider J, Weimann G, Ploog K (1998) Electrical detection of nuclear magnetic resonance in GaAs-AlxGa1-xAs heterostructures. Phys Rev Lett 61:1650

    Article  ADS  Google Scholar 

  • Eriksson M, Friesen M, Coppersmith S, Joynt R, Klein L, Slinker K, Tahan C, Mooney P, Chu J, Koester S (2004) Spin-based quantum dot quantum computing in Silicon. Quantum Inf Process 3:133

    Article  MATH  Google Scholar 

  • Fafard S, Hinzer K, Raymond S, Dion M, Mccaffrey J, Feng Y, Charbonneau S (1996) Red-emitting semiconductor quantum dot lasers. Science 22:1350

    Article  ADS  Google Scholar 

  • Friesen M, Rugheimer P, Savage D, Lagally M, van der Weide D, Joynt R, Eriksson M (2003) Practical design and simulation of silicon-based quantum-dot qubits. Phys Rev B 67:121301

    Article  ADS  Google Scholar 

  • Friesen M et al (2005) Theory of the Stark effect for P donors in Si. Phys Rev Lett 94:186403

    Article  ADS  Google Scholar 

  • Gonze X et al (2005) A brief introduction to the ABINIT software package. Z Kristallogr 220:558

    Google Scholar 

  • Gonze X et al (2009) ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun 180:2582

    Article  ADS  Google Scholar 

  • Goswami S, Slinker KA, Friesen M, McGuire LM, Truitt JL, Tahan C, Klein LJ, Chu JO, Mooney PM, van der Weide DW, Joynt R, Coppersmith SN, Eriksson MA (2007) Controllable valley splitting in silicon quantum devices. Nat Phys 3:41

    Article  Google Scholar 

  • Graf M, Vogl P (1995) Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys Rev B 51:4940

    Article  ADS  Google Scholar 

  • Greentree A, Cole J, Hamilton A, Hollenberg L (2004) Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys Rev B 70:235317

    Article  ADS  Google Scholar 

  • Greytak A, Lauhon L, Gudiksen M, Lieber C (2004) Growth and transport properties of complementary germanium nanowire field-effect transistors. Appl Phys Lett 84:4176

    Article  ADS  Google Scholar 

  • Grundmann M, Stier O, Bimberg D (1995) InAs/GaAs pyramidal quantum dots: strain distribution, optical phonons, and electronic structure. Phys Rev B 52:11969

    Article  ADS  Google Scholar 

  • Hollenberg L et al (2004) Charge-based quantum computing using single donors in semiconductors. Phys Rev B 69:113301

    Article  MathSciNet  ADS  Google Scholar 

  • Hollenberg L et al (2006) Two-dimensional architectures for donor-based quantum computing. Phys Rev B 74:045311

    Article  ADS  Google Scholar 

  • Hu X et al (2005) Charge qubits in semiconductor quantum computer architecture: tunnel coupling and decoherence. Phys Rev B 71:235332

    Article  ADS  Google Scholar 

  • Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys Rev B 34:5390

    Article  ADS  Google Scholar 

  • Jancu J, Scholz R, Beltram F, Bassani F (1998) Empirical spds* tight-binding calculation for cubic semiconductors: general method and material parameters. Phys Rev B 57:6493

    Article  ADS  Google Scholar 

  • Jarjour A, Taylor R, Oliver R, Kappers M, Humphreys C, Tahraoui A (2008) Electrically driven single InGaN/GaN quantum dot emission. Appl Phys Lett 93:233103

    Article  ADS  Google Scholar 

  • Jayavel P, Tanaka H, Kita T, Wada O, Ebe H, Sugawara M, Tatebayashi J, Arakawa Y, Nakata Y, Akiyama T (2004) Control of optical polarization anisotropy in edge emitting luminescence of InAs/GaAs self-assembled quantum dots. Appl Phys Lett 84:1820

    Article  ADS  Google Scholar 

  • Kalden J, Tessarek C, Sebald K, Figge S, Kruse C, Hommel D, Gutowski J (2010) Electroluminescence from a single InGaN quantum dot in the green spectral region up to 150 K. Nanotechnology 21:015204

    Article  ADS  Google Scholar 

  • Kane B (1998) A silicon-based nuclear spin quantum computer. Nature 393:133

    Article  ADS  Google Scholar 

  • Ke W, Fu C, Chen C, Lee L, Ku C, Chou W, Chang W-H, Lee M, Chen W, Lin W (2006) Photoluminescence properties of self-assembled InN dots embedded in GaN grown by metal organic vapor phase epitaxy. Appl Phys Lett 88:191913

    Article  ADS  Google Scholar 

  • Keating P (1966) Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys Rev 145:637

    Article  ADS  Google Scholar 

  • Kharche N, Prada M, Boykin T, Klimeck G (2007) Valley-splitting in strained Silicon quantum wells modeled with 2 degree miscuts, step disorder, and alloy disorder. Appl Phys Lett 90:092109

    Article  ADS  Google Scholar 

  • Kharche N, Luisier M, Boykin T, Klimeck G (2008) Electronic structure and transmission characteristics of SiGe nanowire. J Comput Electron 7:350

    Article  Google Scholar 

  • Kim C, Yang J, Lee H, Jang H, Joa M, Park W, Kim Z, Maeng S (2007) Fabrication of Si1−xGex alloy nanowire field-effect transistors. Appl Phys Lett 91:033104

    Article  ADS  Google Scholar 

  • Klimeck G, Boykin T, Chris R, Lake R, Blanks D, Moise T, Kao Y, Frensley W (1997) Quantitative simulation of strained InP-based resonant tunneling diodes. In: Proceedings of the 1997 55th IEEE device research conference digest, Colorado vol 92

    Google Scholar 

  • Klimeck G, Bowen R, Boykin T, Cwik T (2000a) sp3s* tight-binding parameters for transport simulations in compound semiconductors. Superlattices Microstruct 27:519–524

    Article  ADS  Google Scholar 

  • Klimeck G, Bowen R, Boykin T, Salazar-Lazaro C, Cwik T, Stoica A (2000b) Si tight-binding parameters from genetic algorithm fitting. Superlattices Microstruct 27:77–88

    Article  ADS  Google Scholar 

  • Klimeck G, Oyafuso F, Boykin T, Bowen R, Allman P (2002) Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. Comput Model Eng Sci 3:601

    MATH  Google Scholar 

  • Klimeck G, Boykin T, Luisier M, Kharche N, Schenk A (2006) A Study of alloyed nanowires from two perspectives: approximate dispersion diagrams and transmission coefficients. In: Proceedings of the 28th international conference on the physics of semiconductors ICPS 2006, Vienna

    Google Scholar 

  • Klimeck G, Ahmed S, Bae H, Kharche N, Clark S, Haley B, Lee S, Naumov M, Ryu H, Saied F, Prada M, Korkusinski M, Boykin T (2007a) Atomistic simulation of realistically sized nanodevices using NEMO 3-D: part I – models and benchmarks. IEEE Trans Electron Devices 54:2079

    Article  ADS  Google Scholar 

  • Klimeck G, Ahmed S, Kharche N, Korkusinski M, Usman M, Prada M, Boykin T (2007b) Atomistic simulation of realistically sized nanodevices using NEMO 3-D: part II – applications. IEEE Trans Electron Devices 54:2090

    Article  ADS  Google Scholar 

  • Klimeck G, Mannino M, McLennan M, Qiao W, Wang X (2008) https://www.nanohub.org/simulation_tools/qdot_tool_information

  • Kohn W, Luttinger J (1995) Theory of donor states in silicon. Phys Rev 98:915

    Article  ADS  Google Scholar 

  • Koiller B, Hu X, Das Sarma S (2006) Electric-field driven donor-based charge qubits in semiconductors. Phys Rev B 73:045319

    Article  ADS  Google Scholar 

  • Korkusinski M, Klimeck G (2006) Atomistic simulations of long-range strain and spatial asymmetry molecular states of seven quantum dots. J Phys Conf Ser 38:75–78

    Article  ADS  Google Scholar 

  • Korkusinski M, Klimeck G, Xu H, Lee S, Goasguen S, Saied F (2005) Atomistic simulations in nanostructures composed of tens of millions of atoms: importance of long-range strain effects in quantum dots. In: Proceedings of 2005 NSTI conference, Anaheim

    Google Scholar 

  • Korkusinski M, Saied F, Xu H, Lee S, Sayeed M, Goasguen S, Klimeck G (2005) Large scale simulations in nanostructures with NEMO3-D on Linux clusters. Linux Cluster Institute conference, Raleigh

    Google Scholar 

  • Lanczos C (1950) An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Natl Bur Stand 45:255–282

    Article  MathSciNet  Google Scholar 

  • Lansbergen GP, Rahman R, Wellard CJ, Woo I, Caro J, Collaert N, Biesemans S, Klimeck G, Hollenberg LCL, Rogge S (2008) Gate induced quantum confinement transition of a single dopant atom in a Si FinFET. Nat Phys 4:656

    Article  Google Scholar 

  • Lazarenkova O, Allmen P, Oyafuso F, Lee S, Klimeck G (2004) Effect of anharmonicity of the strain energy on band offsets in semiconductor nanostructures. Appl Phys Lett 85:4193

    Article  ADS  Google Scholar 

  • Lee S, Kim J, Jönsson L, Wilkins J, Bryant G, Klimeck G (2002) Many-body levels of multiply charged and laser-excited InAs nanocrystals modeled by empirical tight binding. Phys Rev B 66:235307

    Article  ADS  Google Scholar 

  • Lee S, Lazarenkova O, Oyafuso F, Allmen P, Klimeck G (2004a) Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots. Phys Rev B 70:125307

    Article  ADS  Google Scholar 

  • Lee S, Oyafuso F, Allmen P, Klimeck G (2004b) Boundary conditions for the electronic structure of finite-extent, embedded semiconductor nanostructures with empirical tight-binding model. Phys Rev B 69:045316

    Article  ADS  Google Scholar 

  • Li X et al (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229

    Article  ADS  Google Scholar 

  • Liang G, Xiang J, Kharche N, Klimeck G, Lieber C, Lundstrom M (2006) Performance analysis of a Ge/Si core/shell nanowire field effect transistor. cond-mat 0611226

    Google Scholar 

  • Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120

    Article  ADS  Google Scholar 

  • Luisier M, Schenk A, Fichtner W, Klimeck G (2006) Atomistic simulation of nanowires in the sp 3 d 5 s * tight-binding formalism: from boundary conditions to strain calculations. Phys Rev B 74:205323

    Article  ADS  Google Scholar 

  • Martins A et al (2004) Electric-field control and adiabatic evolution of shallow donor impurities in silicon. Phys Rev B 69:085320

    Article  ADS  Google Scholar 

  • Maschhoff K, Sorensen D (1996) A portable implementation of ARPACK for distributed memory parallel architectures. Copper Mountain conference on iterative methods, Copper Mountain, 9–13 Apr 1996

    Google Scholar 

  • Maximov M, Shernyakov Y, Tsatsul’nikov A, Lunev A, Sakharov A, Ustinov V, Egorov A, Zhukov A, Kovsch A, Kop’ev P, Asryan L, Alferov Z, Ledentsov N, Bimberg D, Kosogov A, Werner P (1998) High-power continuous-wave operation of a InGaAs/AlGaAs quantum dot laser. J Appl Phys 83:5561

    Article  ADS  Google Scholar 

  • Michler P, Kiraz A, Becher C, Schoenfeld W, Petroff P, Zhang L, Hu E, Imamoglu A (2000) A quantum dot single-photon turnstile device. Science 290:2282–2285

    Article  ADS  Google Scholar 

  • Moore G (1975) Progress in digital integrated electronics. IEDM Tech Dig (21):11–13

    Google Scholar 

  • Moreau E, Robert I, Manin L, Thierry-Mieg V, Gérard J, Abram I (2001) Quantum cascade of photons in semiconductor quantum dots. Phys Rev Lett 87:183601

    Article  ADS  Google Scholar 

  • Morkoç H, Mohammad SN (1995) High-luminosity blue and blue-green gallium nitride light-emitting diodes. Science 267:51

    Article  ADS  Google Scholar 

  • Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954

    Article  ADS  Google Scholar 

  • Naumov M, Lee S, Haley B, Bae H, Clark S, Rahman R, Ryu H, Saied F, Klimeck G (2007) Eigenvalue solvers for atomistic simulations of electronic structureswith NEMO-3D. In: 12th international workshop on computational electronics, Amherst, 7–10 Oct

    Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  ADS  Google Scholar 

  • Novoselov KS et al (2005a) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197

    Article  ADS  Google Scholar 

  • Novoselov KS et al (2005b) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451

    Article  ADS  Google Scholar 

  • Oberhuber R, Zandler G, Vogl P (1998) Subband structure and mobility of two–dimensional holes in strained Si/SiGe MOSFET’s. Phys Rev B 58:9941–9948

    Article  ADS  Google Scholar 

  • Oyafuso F, Klimeck G, Allmen P, Boykin T, Bowen R (2003a) Strain effects in large-scale atomistic quantum dot simulations. Phys Status Solidi B 239:71

    Article  ADS  Google Scholar 

  • Oyafuso F, Klimeck G, Bowen R, Boykin T, Allmen P (2003b) Disorder induced broadening in multimillion atom alloyed quantum dot systems. Phys Status Solidi C 4:1149

    Article  Google Scholar 

  • Persson A, Larsson M, Steinström S, Ohlsson B, Samuelson L, Wallenberg L (2004) Solid phase diffusion mechanism for GaAs NW growth. Nat Mater 3:677

    Article  ADS  Google Scholar 

  • Petroff P (2003) Single quantum dots: fundamentals, applications, and new concepts. Springer, Berlin

    Google Scholar 

  • Ponce FA, Bour DP (1997) Nitride-based semiconductors for blue and green light-emitting devices. Nature 386:351

    Article  ADS  Google Scholar 

  • Prada M, Kharche N, Klimeck G (2007) Electronic structure of Si/InAs composite channels. In: MRS spring conference, symposium G: extending Moore’s law with advanced channel materials, San Francisco, 9–13 Apr 2007

    Google Scholar 

  • Pryor C, Kim J, Wang L, Williamson A, Zunger A (1998) Comparison of two methods for describing the strain profiles in quantum dots. J Appl Phys 83:2548

    Article  ADS  Google Scholar 

  • Qiao W, Mclennan M, Kennell R, Ebert D, Klimeck G (2006) Hub-based simulation and graphics hardware accelerated visualization for nanotechnology applications. IEEE Trans Vis Comput Graph 12:1061–1068

    Article  Google Scholar 

  • Rahman A, Klimeck G, Lundstrom M (2005) Novel channel materials for ballistic nanoscale MOSFETs bandstructure effects. In: 2005 I.E. international electron devices meeting, Washington, DC, pp 601–604

    Google Scholar 

  • Rahman R et al (2007) High precision quantum control of single donor spins in silicon. Phys Rev Lett 99:036403

    Article  ADS  Google Scholar 

  • Ramdas A et al (1981) Spectroscopy of the solid-state analogues of the hydrogen atom: donors and acceptors in semiconductors. Rep Prog Phys 44:1297–1387

    Article  ADS  Google Scholar 

  • Reed M (1993) Quantum dots. Sci Am 268:118

    Article  ADS  Google Scholar 

  • Reed M, Randall J, Aggarwal R, Matyi R, Moore T, Wetsel A (1988) Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure. Phys Rev Lett 60:535

    Article  ADS  Google Scholar 

  • Ru ECL, Howe P, Jones TS, Murray R (2003) Strain-engineered InAs/GaAs quantum dots for long-wavelength emission. Phys Rev B 67:165303

    Article  ADS  Google Scholar 

  • Sameh A, Tong Z (2000) The trace minimization method for the symmetric generalized eigenvalue problem. J Comput Appl Math 123:155–175

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sellier H et al (2006) Transport spectroscopy of a single dopant in a gated silicon nanowire. Phys Rev Lett 97:206805

    Article  ADS  Google Scholar 

  • Semiconductor Industry Association (2001) International technology roadmap for semiconductors. http://public.itrs.net/Files/2001ITRS/Home.htm

  • Sheng W, Leburton JP (2002) Interband transition distributions in the optical spectra of InAs/GaAs self-assembled quantum dots. Appl Phys Lett 80:2755

    Article  ADS  Google Scholar 

  • Slater J, Koster G (1954) Simplified LCAO method for the periodic potential problem. Phys Rev 94:1498–1524

    Article  ADS  MATH  Google Scholar 

  • Stegner A et al (2006) Electrical detection of coherent P spin quantum states. Nat Phys 2:835

    Article  Google Scholar 

  • Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. Phys Rev B 59:5688

    Article  ADS  Google Scholar 

  • Sundaresan S, Islam S, Ahmed S (2010) Built-In Electric Fields in InAs/GaAs Quantum Dots: Geometry Dependence and Effects on the Electronic Structure. In: Technical Proceedings of IEEE Nanotechnology Materials and Devices Conferences (NMDC), California, USA pp. 30–35

    Google Scholar 

  • Sze S, May G (2003) Fundamentals of semiconductor fabrication. Wiley, New York

    Google Scholar 

  • Usman M, Ahmed S, Korkusinski M, Heitzinger C, Klimeck G (2006) Strain and electronic structure interactions in realistically scaled quantum dot stacks. In: Proceedings of the 28th international conference on the physics of semiconductors ICPS 2006, Vienna

    Google Scholar 

  • Usman M, Ryu H, Woo I, Ebert DS, Klimeck G (2009) Moving toward nano-TCAD through multimillion-atom quantum-dot simulations matching experimental data. IEEE Trans Nanotechnol 8:330

    Article  ADS  Google Scholar 

  • Usman M, Heck S, Clarke E, Spencer P, Ryu H, Murray R, Klimeck G (2011a) Experimental and theoretical study of polarization-dependent optical transitions in InAs quantum dots at telecommunication-wavelengths (1300–1500 nm). J Appl Phys 109:104510

    Article  ADS  Google Scholar 

  • Usman M, Inoue T, Harda Y, Klimeck G, Kita T (2011b) Experimental and atomistic theoretical study of degree of polarization from multilayer InAs/GaAs quantum dot stacks. Phys Rev B 84:115321

    Article  ADS  Google Scholar 

  • Usman M, Tan M, Ryu R, Krenner H, Ahmed S, Boykin T, Klimeck G (2011c) Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations. Nanotechnology 22:315709

    Article  ADS  Google Scholar 

  • Vasileska D, Khan H, Ahmed S (2005) Quantum and coulomb effects in nanodevices. Int J Nanosci 4:305–361

    Article  Google Scholar 

  • Vrijen R et al (2000) Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys Rev A 62:012306

    Article  ADS  Google Scholar 

  • Wallace PR (1947) The band theory of graphite. Phys Rev 71:622

    Article  ADS  MATH  Google Scholar 

  • Waltereit P, Brandt O, Trampert A, Grahn HT, Menniger J, Ramsteiner M, Reiche M, Ploog KH (2000) Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406:865–868

    Article  ADS  Google Scholar 

  • Wang L, Zunger A (1994) Solving Schrödinger’s equation around a desired energy: application to silicon quantum dots. J Chem Phys 100:2394

    Article  ADS  Google Scholar 

  • Wang J, Rahman A, Ghosh A, Klimeck G, Lundstrom M (2005) Performance evaluation of ballistic silicon nanowire transistors with atomic-basis dispersion relations. Appl Phys Lett 86:093113

    Article  ADS  Google Scholar 

  • Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803

    Article  ADS  Google Scholar 

  • Wang H, Jiang D, Zhu J, Zhao D, Liu Z, Wang Y, Zhang S, Yang H (2009a) Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition. J Phys D 42:145410

    Article  ADS  Google Scholar 

  • Wang X, Li X, Zhang L, Yoon Y, Weber P, Wang H, Guo J, Dai H (2009b) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768

    Article  ADS  Google Scholar 

  • Wellard C, Hollenberg L (2005) Donor electron wave functions for phosphorus in silicon: beyond effective-mass theory. Phys Rev B 72:085202

    Article  ADS  Google Scholar 

  • Welser J, Hoyt J, Gibbons J (1992) NMOS and PMOS transistors fabricated in strained silicon/relaxed silicon-germanium structures. IEDM Tech Dig 1000–1002 doi:10.1109/IEDM.1992.307527

    Google Scholar 

  • Williamson A, Wang L, Zunger A (2000) Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys Rev B 62:12963–12977

    Article  ADS  Google Scholar 

  • Wong HS (2002) Beyond the conventional transistor. IBM J Res Dev 46:133–168

    Article  Google Scholar 

  • Xie Q, Madhukar A, Chen P, Kobayashi NP (1995) Vertically self-organized InAs quantum box islands on GaAs (100). Phys Rev Lett 75:2542

    Article  ADS  Google Scholar 

  • Yalavarthi K, Gaddipati V, Ahmed S (2011) Internal fields in InN/GaN quantum dots: geometry dependence and competing effects on the electronic structure. Phys E 43:1235–1239

    Article  Google Scholar 

  • Yang L, Park C-H, Son Y-W, Cohen ML, Louie SG (2007) Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett 99:186801

    Article  ADS  Google Scholar 

  • Zandviet H, Elswijk H (1993) Morphology of monatomic step edges on vicinal Si(001). Phys Rev B 48:14269

    Article  ADS  Google Scholar 

  • Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201

    Article  ADS  Google Scholar 

  • Zheng Y, Rivas C, Lake R, Alam K, Boykin T, Klimeck G (2005) Electronic properties of silicon nanowires. IEEE Trans Electron Devices 52:1097–1103

    Article  ADS  Google Scholar 

  • Zhirnov VV, Cavin RK III, Hutchby JA, Bourianoff GI (2003) Limits to binary logic switch – a Gedanken model. Proc IEEE 91:1934–1939

    Article  Google Scholar 

  • Zhu W, Han JP, Ma T (2004) Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics. IEEE Trans Electron Devices 51:98–105

    Article  ADS  Google Scholar 

Books and Reviews

  • Bimberg D, Grundmann M, Ledentsov N (1999) Quantum dot heterostructures. Wiley, New York

    Google Scholar 

  • Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Harrison P (2005) Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures, 2nd edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

Download references

Acknowledgment

The work has been supported by the Indiana 21st Century Fund, Army Research Office, Office of Naval Research, Semiconductor Research Corporation, ARDA, and the National Science Foundation. The work described in this publication was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The development of the NEMO 3D tool involved a large number of individuals at JPL and Purdue, whose work has been cited. Drs. R. Chris Bowen, Fabiano Oyafuso, and Seungwon Lee were key contributors in this large effort at JPL. The authors acknowledge an NSF TeraGrid award DMR070032. Shaikh Ahmed acknowledges NSF Grant Nos. CCF-1218839 and EECS-1102192. Access to the Blue Gene was made available through the auspices of the Computational Center for Nanotechnology Innovations (CCNI) at Rensselaer Polytechnic Institute. Access to the Oak Ridge National Lab XT3/4 was provided by the National Center for Computational Sciences project. We would also like to thank the Rosen Center for Advanced Computing at Purdue for their support. NanoHUB computational resources were used for part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Ahmed, S. et al. (2015). Multimillion Atom Simulation of Electronic and Optical Properties of Nanoscale Devices Using NEMO 3-D. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_343-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_343-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics