Skip to main content

Conduction and Diffusion in Percolating Systems

Encyclopedia of Complexity and Systems Science
  • 455 Accesses

Definition of the Subject and Its Importance

The problem of determining the macroscopic structural and transport properties of microscopically nonuniform materials has a long history and is of such central importance that it finds applications in an astonishingly wide range of areas of science and technology, from developmental biology to xerography (Milton 2002; Sahimi 2003a, b). Consider systems that consist of two phases, each of which is homogeneous in its properties, mixed in some way to create an inhomogeneous material. Let one phase occupy a fraction ϕ of the volume. If ϕ ≪ 1, so that the inhomogeneous structure is in some sense dilute, the possibility arises of determining the effective properties of the material as an expansion in powers of ϕ. Simple examples of this, when the dilute phase consists of identical spheres distributed in some reasonable manner, are the prediction variously associated with the names of Maxwell, Clausius, Mossotti, Lorenz, Lorentz, and others that...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Backbone:

In a lattice percolation problem above the percolation threshold, that fraction of the infinite cluster with two disjoint connections to infinity.

Correlation length (ξ):

Length scale in a randomly structured system over which the system cannot be regarded as homogeneous.

Critical exponent:

Exponent characterizing the dominant behavior of an observable quantity near a percolation threshold, e.g., ξ ~ constant × (p cp)ν as pp c.

Effective medium approximation:

Approximate description of an inhomogeneous system obtained by matching averaged local fluctuations in properties in a self-consistent manner.

Flux:

Vector-valued function (in a continuum) or signed scalar (in a discrete system) quantifying transport or conduction rates.

Lattice:

Discrete structure (network/graph) of sites (nodes/vertices) connected by bonds (links/edges), including periodic lattices, random lattices, and treelike or self-similar pseudolattices.

Percolation theory:

Idealized model of a random medium. In the classical discrete case, the bonds of a lattice are independently open with probability p (Bernoulli bond percolation) or the sites of a lattice are independently occupied with probability p (Bernoulli site percolation). There are various continuum analogues.

Percolation threshold (p c):

Dividing point in parameter space separating cases where long-range connectivity is precluded (infinite connected sets exist with probability 0) from those where long-range connectivity occurs (infinite connected sets exist with positive probability).

Percolative system:

Random two-phase continuous or discrete system in which one phase is deemed void or nonconducting; usually a percolation threshold exists in such systems.

Potential (V):

Function distributed over space or over the sites of a network from which steady-state transport or conduction may be determined.

Pseudolattice:

A nonperiodic discrete structure of sites (nodes/vertices) and bonds (links/edges), most commonly either topologically treelike or geometrically self-similar.

Random walk:

Model of random motion, especially on lattices, consisting of a sequence of steps separated by constant or random time intervals.

Recurrent random walk:

Random walk process on a lattice for which the walker returns to the starting site with probability 1.

Renormalization:

Converting a system, either exactly or approximately, to a related system with a different characteristic length scale.

Transient random walk:

Random walk process on a lattice for which the walker has probability less than 1 of returning to the starting site.

Bibliography

  • Ahmed G, Blackman JA (1979) On theories of transport in disordered media. J Phys C 12:837–853

    Article  ADS  Google Scholar 

  • Alexander S, Orbach R (1982) Density of states on fractals: ‘fractions’. J Phys Lett 43:L625–L631

    Article  Google Scholar 

  • Alexander S, Bernasconi J, Schneider WR, Orbach R (1981) Excitation dynamics in random one-dimensional systems. Rev Mod Phys 53:175–198

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23:1482–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505

    Article  ADS  Google Scholar 

  • Andreolotti P (2005) Alternative proof for the localization of Sinai’s walk. J Stat Phys 118:883–933

    Article  MathSciNet  ADS  Google Scholar 

  • Angles d’Auriac JC, Rammal R (1983) Scaling analysis for random walk properties on percolation clusters. J Phys C 16:L825–L830

    Article  Google Scholar 

  • Barlow MT (2004) Random walks on supercritical percolation clusters. Ann Probab 32:3024–3084

    Article  MathSciNet  MATH  Google Scholar 

  • Barlow MT, Kumagai T (2006) Random walk on the incipient infinite cluster on trees. Ill J Math 50:33–65

    MathSciNet  MATH  Google Scholar 

  • Barlow MT, Járai AA, Kumagai T, Slade G (2008) Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun Math Phys 278:385–431

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Batrouni GG, Hansen A, Larson B (1996) Current distribution in the three-dimensional random resistor network at the percolation threshold. Phys Rev E 53:2292–2297

    Article  ADS  Google Scholar 

  • Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bensoussan A, Lions J-L, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Beran MJ (1965) Statistical continuum theories. Trans Soc Rheol 9:339–355

    Article  Google Scholar 

  • Beran MJ (1968) Statistical continuum theories. Wiley, New York

    MATH  Google Scholar 

  • Berger N, Biskup M (2007) Quenched invariance principle for simple random walk on percolation clusters. Probab Theory Relat Fields 137:83–120

    Article  MathSciNet  MATH  Google Scholar 

  • Berger N, Gantert N, Peres Y (2007) The speed of biased random walk on percolation clusters. arXiv:math/0211303v3 (revised version of (2003) Probab Theory Relat Fields 126:221–242)

    Google Scholar 

  • Bergman DJ (1978) Analytical properties of the complex effective dielectric constant of a composite medium with applications to the derivation of rigorous bounds and to percolation problems. In: Garland JC, Tanner DB (eds) Electrical transport and optical properties of inhomogeneous media. AIP conference proceedings, vol 40. American Institute of Physics, New York, pp 46–61

    Google Scholar 

  • Berlyand L, Golden K (1994) Exact result for the effective conductivity of a continuum percolation model. Phys Rev B 50:2114–2117

    Article  ADS  Google Scholar 

  • Bernasconi J, Schneider WR, Weismann HJ (1977) Some rigorous results for random planar conductance networks. Phys Rev B 16:5250–5255

    Article  ADS  Google Scholar 

  • Billingsley P (1965) Ergodic theory and information. Wiley, New York

    MATH  Google Scholar 

  • Biskup M (2011) Recent progress on the Random Conductance Model. Probab Surv 8:294–373

    Article  MathSciNet  MATH  Google Scholar 

  • Blumenfeld R, Meir Y, Harris AB, Aharony A (1986) Infinite set of exponents describing physics on fractal networks. J Phys A 19:L791–L796

    Article  ADS  Google Scholar 

  • Blumenfeld R, Meir Y, Aharony A, Harris AB (1987) Resistance fluctuations in randomly diluted networks. Phys Rev B 35:3524–3535

    Article  ADS  Google Scholar 

  • Bollobas B, Riordan O (2006) Percolation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Borgs C, Chayes JT, Kesten H, Spencer J (1999) Uniform boundedness of critical crossing probabilities implies hyperscaling. Random Struct Algorithms 15:368–413

    Article  MathSciNet  MATH  Google Scholar 

  • Borgs C, Chayes JT, Kesten H, Spencer J (2001) The birth of the infinite cluster: finite-size scaling in percolation. Commun Math Phys 224:153–204

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brandt WW (1975) Use of percolation theory to estimate effective diffusion coefficients of particles migrating on various ordered lattices and in a random network structure. J Chem Phys 63:5162–5167

    Article  ADS  Google Scholar 

  • Broadbent SR, Hammersley JM (1957) Percolation processes. I. Crystals and mazes. Proc Camb Philos Soc 53:629–641

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brown WF (1955) Solid mixture permittivities. J Chem Phys 23:1514–1517

    Article  ADS  Google Scholar 

  • Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys (Leipzig) 24:636–679

    Article  ADS  Google Scholar 

  • Byshkin MS, Turkin AA (2005) A new method for the calculation of the conductivity of inhomogeneous systems. J Phys A 38:5057–5067

    Article  MathSciNet  ADS  Google Scholar 

  • Calvert B, Keady G (1993) Braess’s paradox and power-law nonlinearities in networks. J Aust Math Soc B 35:1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Chayes JT, Chayes L (1986) Bulk transport properties and exponent inequalities for random resistor and flow networks. Commun Math Phys 105:133–152

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chayes JT, Chayes L (1987) On the upper critical dimension of Bernoulli percolation. Commun Math Phys 113:27–48

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Clerc JP, Podolskiy VA, Sarychev AK (2000) Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization. Eur Phys J B 15:507–516

    Article  ADS  Google Scholar 

  • de Gennes PG (1976a) La percolation: un concept unificateur. Rech 7:919–927

    Google Scholar 

  • de Gennes PG (1976b) On a relation between percolation theory and the elasticity of gels. J Phys Lett 37:L1–L2

    Article  ADS  Google Scholar 

  • de Masi A, Ferrari PA, Goldstein S, Wick WD (1985) Invariance principle for reversible Markov processes with application to diffusion in the percolation regime. In: Durrett R (ed) Particle systems, random media and large deviations. Contemporary mathematics, vol 41. American Mathematical Society, Providence, pp 71–85

    Google Scholar 

  • de Masi A, Ferrari PA, Goldstein S, Wick WD (1989) An invariance principle for reversible Markov processes. Applications to random motions in random environments. J Stat Phys 55:787–855

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Deng Y, Blöte HWJ (2005) Monte Carlo study of the site-percolation model in two and three dimensions. Phys Rev B 72:016126

    Article  ADS  Google Scholar 

  • Derrida B, Vannimenus J (1982) A transfer matrix approach to random resistor networks. J Phys A 15:L557–L564

    Article  MathSciNet  ADS  Google Scholar 

  • Derrida B, Zabolitzky JG, Vannimenus J, Stauffer D (1984) A transfer matrix program to calculate the conductivity of random resistor networks. J Stat Phys 36:31–42

    Article  ADS  MATH  Google Scholar 

  • Doyle PG, Snell JL (1984) Random walks and electric networks. Carus mathematical monograph no 22. Mathematical Association of America, Washington, DC

    Google Scholar 

  • Duering E, Roman HE (1991) Corrections to scaling for diffusion exponents on three dimensional percolation systems at criticality. J Stat Phys 64:851–858

    Article  ADS  MATH  Google Scholar 

  • Eggarter TP, Cohen MH (1970) Simple model for density of states and mobility of an electron in a gas of hard-core scatterers. Phys Rev Lett 25:807–810

    Article  ADS  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 19:89306

    MATH  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: ‘Eine neue Bestimmung der Moleküldimensionen’. Ann Phys 34:591–592

    Article  MATH  Google Scholar 

  • Fatt I (1956) The network model of porous media [in 3 parts]: I – Capillary pressure characteristics; II – Dynamic properties of a single size tube network; III – Dynamic properties of networks with tube radius distribution. Trans Am Inst Min Metall Pet Eng Pet Branch 207:144–159, 160–163, 164–177

    Google Scholar 

  • Feller W (1970) An introduction to probability theory and its applications, vol 1, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  • Feller W (1971) An introduction to probability theory and its applications, vol 2, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Feng S, Halperin BI, Sen PN (1987) Transport properties of continuum systems near the percolation threshold. Phys Rev B 35:197–214

    Article  ADS  Google Scholar 

  • Fisher ME (1971) The theory of critical point singularities. In: Green MS (ed) Critical phenomena: Enrico Fermi Summer School. Academic, New York, pp 1–99

    Google Scholar 

  • Fogelholm R (1980) The conductivity of large percolation network samples. J Phys C 13:L571–L574

    Article  ADS  Google Scholar 

  • Fortuin CM (1972) On the random cluster model. II. The percolation model. Physica 58:393–418

    Article  MathSciNet  ADS  Google Scholar 

  • Fortuin CM, Kasteleyn PW (1972) On the random cluster model. I. Introduction and relation to other models. Physica 57:536–564

    Article  MathSciNet  ADS  Google Scholar 

  • Gefen Y, Aharony A, Mandelbrot BB, Kirkpatrick S (1981) Solvable fractal family and its possible relation to the backbone at percolation. Phys Rev Lett 47:1771–1774

    Article  MathSciNet  ADS  Google Scholar 

  • Gefen Y, Aharony A, Alexander S (1983) Anomalous diffusion on percolating clusters. Phys Rev Lett 50:77–80

    Article  ADS  Google Scholar 

  • Gingold DB, Lobb CJ (1990) Percolative conduction in three dimensions. Phys Rev B 42:8220–8224

    Article  ADS  Google Scholar 

  • Golden K, Papanicolaou G (1983) Bounds for effective parameters of heterogeneous media by analytic continuation. Commun Math Phys 90:473–491

    Article  MathSciNet  ADS  Google Scholar 

  • Goldsheid IY (2007) Simple transient random walks in one-dimensional random environment: the central limit theorem. Probab Theory Relat Fields 139:41–64

    Article  MathSciNet  MATH  Google Scholar 

  • Grassberger P (1999) Conductivity exponent and backbone dimension in 2-d percolation. Phys A 262:251–263

    Article  MathSciNet  Google Scholar 

  • Grassberger P, Procaccia I (1982) The long-time properties of diffusion in a medium with static traps. J Chem Phys 77:6281–6284

    Article  ADS  Google Scholar 

  • Grimmett G (1999) Percolation, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Grimmett GR, Kesten H, Zhang Y (1993) Random walk on the infinite cluster of the percolation model. Probab Theory Relat Fields 96:33–44

    Article  MathSciNet  MATH  Google Scholar 

  • Gu GQ, Yu KW (1992) Effective conductivity of nonlinear composites. Phys Rev B 46:4502–4507

    Article  ADS  Google Scholar 

  • Hambly BM, Kumagai T (2010) Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Commun Math Phys 295:29–69

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hammersley JM (1957a) Percolation processes. II. The connective constant. Proc Camb Philos Soc 53:642–645

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hammersley JM (1957b) Percolation processes. Lower bounds for the critical probability. Ann Math Stat 28:791–795

    Article  MathSciNet  MATH  Google Scholar 

  • Hammersley JM (1961) Comparison of atom and bond percolation processes. J Math Phys 2:728–733

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hammersley JM (1988) Mesoadditive processes and the specific conductivity of lattices. J Appl Probab 25A(Special Volume, edited by Gani J):347–358

    Google Scholar 

  • Hara T, Slade G (1994) Mean-field behaviour and the lace expansion. In: Grimmett G (ed) Probability and phase transition. Kluwer, Dordrecht, pp 87–122

    Chapter  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33:3125–3131

    Article  ADS  MATH  Google Scholar 

  • Havlin S, Ben-Avraham D (1983) Diffusion and fracton dimensionality on fractals and on percolation clusters. J Phys A 16:L483–L487

    Article  MathSciNet  ADS  Google Scholar 

  • Havlin S, Ben-Avraham D, Sompolinsky H (1983) Scaling behavior of diffusion on percolation clusters. Phys Rev A 27:1730–1733

    Article  ADS  Google Scholar 

  • Haynes CP, Roberts AP (2009) Generalization of the fractal Einstein law relating conduction and diffusion on networks. Phys Rev Lett 103:020601

    Article  ADS  Google Scholar 

  • Heinrichs J, Kumar N (1975) Simple exact treatment of conductance in a random Bethe lattice. J Phys C 8:L510–L516

    Article  Google Scholar 

  • Heitjans P, Kärger J (eds) (2005) Diffusion in condensed matter: methods, material, models. Springer, Berlin

    Google Scholar 

  • Herrmann HJ, Derrida B, Vannimenus J (1984) Superconductivity exponents in two- and three-dimensional percolation. Phys Rev B 30:4080–4082

    Article  ADS  Google Scholar 

  • Hong DC, Havlin S, Herrmann HJ, Stanley HE (1984) Breakdown of the Alexander-Orbach conjecture for percolation: exact enumeration of random walks on percolation backbones. Phys Rev B 30:4083–4086

    Article  ADS  Google Scholar 

  • Hughes BD (1995) Random walks and random environments, vol 1: random walks. Oxford University Press, Oxford

    Google Scholar 

  • Hughes BD (1996) Random walks and random environments, vol 2: random environments. Oxford University Press, Oxford

    Google Scholar 

  • Járai AA (2003) Incipient infinite percolation clusters in 2D. Ann Probab 31:444–485

    Article  MathSciNet  MATH  Google Scholar 

  • Jerauld GR, Hatfield JC, Scriven LE, Davis HT (1984a) Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder. J Phys C 17:15191529

    Google Scholar 

  • Jerauld GR, Scriven LE, Davis HT (1984b) Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder. J Phys C 17:3429–3439

    Article  ADS  Google Scholar 

  • Jikov VV, Kozlov SM, Oleinik OA (1994) Homogenization of differential operators and integral functionals. Springer, Berlin

    Book  Google Scholar 

  • Kapitulnik A, Aharony A, Deutscher G, Stauffer D (1983) Self-similarity and correlations in percolation theory. J Phys A 16:L269–L274

    Article  ADS  Google Scholar 

  • Kayser RF, Hubbard JB (1983) Diffusion in a medium with a random distribution of static traps. Phys Rev Lett 51:79–82

    Article  MathSciNet  ADS  Google Scholar 

  • Keller JB (1964) A theorem on the conductivity of a composite medium. J Math Phys 5:548–549

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kemeny JG, Snell JL (1976) Finite markov chains. Springer, New York

    MATH  Google Scholar 

  • Kenkel SW, Straley JP (1982) Percolation theory of nonlinear circuit elements. Phys Rev Lett 49:767–770

    Article  MathSciNet  ADS  Google Scholar 

  • Kenkre VM (1982) The master equation approach: coherence, energy transfer, annihilation, and relaxation. In: Kenkre VM, Reineker P (eds) Exciton dynamics in molecular crystals and aggregates. Springer, Berlin, pp 1–109

    Chapter  Google Scholar 

  • Kenkre VM, Montroll EW, Shlesinger MF (1973) Generalized master equations for continuous-time random walks. J Stat Phys 9:45–50

    Article  ADS  Google Scholar 

  • Kesten H (1986a) The incipient infinite cluster in two-dimensional percolation. Probab Theory Relat Fields 73:369–394

    Article  MathSciNet  MATH  Google Scholar 

  • Kesten H (1986b) Subdiffusive behavior of random walk on a random cluster. Ann Inst Henri Poincaré 22:425–487

    MathSciNet  MATH  Google Scholar 

  • Kim IC, Torquato S (1992) Effective conductivity of suspensions of overlapping spheres. J Appl Phys 71:2727–2735

    Article  ADS  Google Scholar 

  • Kirkpatrick S (1971) Classical transport in disordered media: scaling and effective-medium theories. Phys Rev Lett 27:1722–1725

    Article  ADS  Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588

    Article  ADS  Google Scholar 

  • Kirkpatrick S (1978) The geometry of the percolation threshold. In: Garland JC, Tanner DB (eds) Electrical transport and optical properties of inhomogeneous media. AIP conference proceedings, vol 40. American Institute of Physics, New York, pp 99–116

    Google Scholar 

  • Knudsen HA, Fazekas S (2006) Robust algorithm for random resistor networks using hierarchical domain structure. J Comput Phys 211:700–718

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kogut PM, Straley JP (1979) Distribution-induced non-universality of the percolation conductivity exponents. J Phys C 12:2151–2159

    Article  ADS  Google Scholar 

  • Kozlov SM (1989) Geometric aspects of averaging. Russ Math Surv 44(2):91–144

    Article  MathSciNet  MATH  Google Scholar 

  • Kozlov B, Lagues M (2010) Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents. Phys A 389:5339–5346

    Article  Google Scholar 

  • Kozma G, Nachmias A (2009) The Alexander-Orbach conjecture holds in high dimensions. Invent Math 178:635–654

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Landauer R (1978) Electrical conductivity in inhomogeneous media. In: Garland JC, Tanner DB (eds) Electrical transport and optical properties of inhomogeneous media. AIP conference proceedings, vol 40. American Institute of Physics, New York, pp 2–43

    Google Scholar 

  • Last BJ, Thouless DJ (1971) Percolation theory and electrical conductivity. Phys Rev Lett 27:1719–1721

    Article  ADS  Google Scholar 

  • Lawler GF, Schramm O, Werner W (2002) One-arm exponent for critical 2D percolation. Electron J Probab 7(2):1–13

    MathSciNet  MATH  Google Scholar 

  • Li C, Chou TW (2009) Precise determination of the backbone structure and conductivity of 3D percolation networks by the direct electrifying algorithm. Int J Mod Phys C 20:423–433

    Article  ADS  Google Scholar 

  • Lobb CJ, Frank DJ (1979) Large-cell renormalization group calculation of the percolation conductivity critical exponent. J Phys C 12:L827–L830

    Article  ADS  Google Scholar 

  • Lobb CJ, Frank DJ (1984) Percolative conduction and the Alexander-Orbach conjecture in two dimensions. Phys Rev B 30:4090–4092

    Article  ADS  Google Scholar 

  • Majid I, Ben-Avraham D, Havlin S, Stanley HE (1984) Exact-enumeration approach to random walks on percolation clusters in two dimensions. Phys Rev B 30:1626–1628

    Article  ADS  Google Scholar 

  • Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  • Marchant J, Gabillard B (1975) Sur le calcul d’un réseau résistif aléatoire. C R Acad Sci Paris B 281:261–264

    Google Scholar 

  • Markov KZ (2000) Elementary micromechanics of heterogeneous media. In: Markov K, Preziosi L (eds) Heterogeneous media: micromechanics, modeling, methods and simulations. Birkhauser, Boston, pp 1–62

    Chapter  Google Scholar 

  • Mathieu P, Piatnitski A (2007) Quenched invariance principles for random walks on percolation clusters. Proc R Soc Lond A 463:2287–2307

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mathieu P, Remy E (2004) Isoperimetry and heat kernel decay on percolation clusters. Ann Probab 32:100–128

    Article  MathSciNet  MATH  Google Scholar 

  • Meester R, Roy R (1996) Continuum percolation. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Meir Y, Blumenfeld R, Aharony A, Harris AB (1986) Series analysis of randomly diluted nonlinear resistor networks. Phys Rev B 34:3424–3428

    Article  ADS  Google Scholar 

  • Men’shikov MV (1986) Coincidence of critical points in percolation problems. Sov Math Dokl 33:856–859

    MathSciNet  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walker’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37:R161–R208

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Mitescu CD, Roussenq J (1976) Une fourmi dans un labyrinthe: diffusion dans un système de percolation. C R Acad Sci Paris A 283:999–1001

    Google Scholar 

  • Mitescu CD, Ottavi H, Roussenq J (1978) Diffusion on percolation lattices: the labyrinthine ant. In: Garland JC, Tanner DB (eds) Electrical transport and optical properties of inhomogeneous media. AIP conference proceedings, vol 40. American Institute of Physics, New York, pp 377–381

    Google Scholar 

  • Mitescu CD, Allain M, Guyon E, Clerc JP (1982) Electrical conductivity of finite-size percolation networks. J Phys A 15:2523–2531

    Article  ADS  Google Scholar 

  • Mitescu CD, Roussenq J (1983) Diffusion on percolation clusters. In: Deutscher G, Zallen R, Adler J (eds) Percolation processes and structures. Annals of the Israel Physical Society vol 5. Adam Hilger, Bristol, pp 81–100

    Google Scholar 

  • Montroll EW, Weiss GH (1965) Random walks on lattices. II. J Math Phys 6:167–181

    Article  MathSciNet  ADS  Google Scholar 

  • Nakanishi H, Herrmann HJ (1993) Diffusion and spectral dimension on Eden tree. J Phys A 26:4513–4519

    Article  ADS  Google Scholar 

  • Nakayama T, Yakubo K, Orbach RL (1994) Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Rev Mod Phys 66:381–443

    Article  ADS  Google Scholar 

  • Nash-Williams CSJA (1959) Random walks and electric currents in networks. Proc Camb Philos Soc 18:931–958

    MathSciNet  Google Scholar 

  • Normand J-M, Herrmann HJ (1990) Precise numerical determination of the superconducting exponent of percolation in three dimensions. Int J Mod Phys C 1:207–214

    Article  ADS  Google Scholar 

  • Normand J-M, Herrmann HJ (1995) Precise determination of the conductivity exponent of 3D percolation using “Percola”. Int J Mod Phys C 6:813–817

    Article  ADS  Google Scholar 

  • Normand J-M, Herrmann HJ, Hajjar M (1988) Precise calculation of the dynamical exponent of two-dimensional percolation. J Stat Phys 52:441–446

    Article  ADS  Google Scholar 

  • Odagaki T, Lax M (1980) ac hopping conductivity of a one-dimensional bond percolation model. Phys Rev Lett 45:847–850

    Article  ADS  Google Scholar 

  • Oppenheim I, Shuler KE, Weiss GH (1977) Stochastic processes in chemical physics: the master equation. MIT Press, Cambridge, MA

    Google Scholar 

  • Palevski A, Deutscher G (1984) Conductivity measurements on a percolation fractal. J Phys A 17:L895–L898

    Article  ADS  Google Scholar 

  • Pandey RB, Stauffer D (1983) Fractal dimensionality and number of sites visited of the ant in the labyrinth. J Phys A 16:L511–L513

    Article  ADS  Google Scholar 

  • Pandey RB, Stauffer D, Margolina A, Zabolitzky JG (1984) Diffusion on random systems above, below and at their percolation threshold in two and three dimensions. J Stat Phys 34:427–450

    Article  ADS  MATH  Google Scholar 

  • Pearson K (1905) The problem of the random walk. Nature 72:294

    Article  ADS  MATH  Google Scholar 

  • Pemantle R, Peres Y (1996) On which graphs are all random walks in random environments transient? In: Aldous D, Pemantle R (eds) Random discrete structures. IMA volumes in mathematics and its applications no 76. Springer, New York, pp 207–211

    Google Scholar 

  • Pólya G (1919) Quelques problèmes de probabilité se rapportant à la ‘promenade au hasard’. Enseign Math 20:444–445

    MATH  Google Scholar 

  • Pólya G (1921) Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math Ann 83:149–160

    Article  MathSciNet  MATH  Google Scholar 

  • Poole OJ, Salt DW (1996) Monte Carlo simulation of long-time percolation diffusion on d = 2 lattices above the threshold. J Phys A 29:7959–7964

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Puech L, Rammal R (1983) Fractal geometry and anomalous diffusion in the backbone of percolation clusters. J Phys C 16:L1179–L1202

    Article  Google Scholar 

  • Rammal R, Angles d’Auriac JC, Benoit A (1984) Universality of the spectral dimension of percolation clusters. Phys Rev B 30:4087–4089

    Article  ADS  Google Scholar 

  • Rammal R, Lemieux MA, Tremblay AMS (1985) Comment on ‘ϵ-expansion for the conductivity of a random resistor network’. Phys Rev Lett 54:1087

    Article  ADS  Google Scholar 

  • Reš I (2001) Corrections to scaling for percolative conduction: anomalous behavior at small L. Phys Rev B 64:224304

    Article  ADS  Google Scholar 

  • Révész P (2013) Random walk in random and non-random environments, 3rd edn. World Scientific, Singapore

    Google Scholar 

  • Rintoul MD, Torquato S (1997) Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model. J Phys A 30:L585–L592

    Article  ADS  MATH  Google Scholar 

  • Roman HE (1990) Diffusion in three-dimensional random systems at their percolation threshold. J Stat Phys 58:375–382

    Article  ADS  Google Scholar 

  • Sahimi M (1984) Finite-size scaling calculation of conductivity of three-dimensional conductor–superconductor networks at the percolation threshold. J Phys C 17:L355–L358

    Article  ADS  Google Scholar 

  • Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London

    Google Scholar 

  • Sahimi M (1995) Flow and transport in porous media and fractured rock. VCH Verlagsgesellschaft, Weinheim

    MATH  Google Scholar 

  • Sahimi M (2003a) Heterogeneous materials. Linear transport and optical properties, vol 1. Springer, New York

    MATH  Google Scholar 

  • Sahimi M (2003b) Heterogeneous materials. Nonlinear and breakdown properties and atomistic modeling, vol 2. Springer, New York

    MATH  Google Scholar 

  • Sahimi M, Hughes BD, Scriven LE, Davis HT (1983a) Stochastic transport in disordered systems. J Chem Phys 78:6849–6864

    Article  MathSciNet  ADS  Google Scholar 

  • Sahimi M, Hughes BD, Scriven LE, Davis HT (1983b) Critical exponent of percolation conductivity by finite-size scaling. J Phys C 16:L521–L527

    Article  MathSciNet  ADS  Google Scholar 

  • Sahimi M, Hughes BD, Scriven LE, Davis HT (1983c) Real-space renormalization and effective-medium approximation to the percolation conduction problem. Phys Rev B 28:307–311

    Article  ADS  Google Scholar 

  • Seifert E, Suessenbach M (1984) Tests of universality for percolative diffusion. J Phys A 17:L703–L708

    Article  ADS  Google Scholar 

  • Sidoravicius V, Sznitman A-S (2004) Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab Theory Relat Fields 129:219–244

    Article  MathSciNet  MATH  Google Scholar 

  • Simula T, Stenlund M (2010) Multi-Gaussian modes of diffusion in a quenched random environment. Phys Rev E 82:041125

    Article  ADS  Google Scholar 

  • Sinai YG (1982) The limiting behavior of a one-dimensional random walk in a random environment. Theory Probab Appl 27:256–268

    Article  MathSciNet  Google Scholar 

  • Skal AS, Shklovskii BI (1975) Topology of an infinite cluster in the theory of percolation and its relationship to the theory of hopping conduction. Sov Phys Semicond 8:1029–1032

    Google Scholar 

  • Smirnov S, Werner W (2001) Critical exponents for two-dimensional percolation. Math Res Lett 8:729–744

    Article  MathSciNet  MATH  Google Scholar 

  • Solomon F (1975) Random walks in a random environment. Ann Probab 3:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Spitzer F (1976) Principles of random walk, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stanley HE (1977) Cluster shapes at the percolation threshold: an effective cluster dimensionality and its connection with critical point exponents. J Phys A 10:L211–L220

    Article  ADS  Google Scholar 

  • Stanley HE, Coniglio A (1983) Fractal structure of the incipient infinite cluster in percolation. In: Deutscher G, Zallen R, Adler J (eds) Percolation processes and structures. Annals of the Israel Physical Society vol 5. Adam Hilger, Bristol, pp 101–120

    Google Scholar 

  • Stauffer D (1979) Scaling theory of percolation clusters. Phys Rep 54:1–74

    Article  ADS  Google Scholar 

  • Stauffer D (1985) Introduction to percolation theory. Taylor and Francis, London

    Book  MATH  Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory, 2nd edn. Taylor and Francis, London

    MATH  Google Scholar 

  • Stinchcombe RB (1973) The branching model for percolation theory and electrical conductivity. J Phys C 6:L1–L5

    Article  MathSciNet  ADS  Google Scholar 

  • Stinchcombe RB (1974) Conductivity and spin-wave stiffness in disordered systems: an exactly soluble model. J Phys C 7:197–203

    Google Scholar 

  • Straley JP (1976) Critical phenomena in resistor networks. J Phys C 9:783–795

    Article  ADS  Google Scholar 

  • Straley JP (1977a) Random resistor tree in an applied field. J Phys C 10:3009–3013

    Article  ADS  Google Scholar 

  • Straley JP (1977b) Critical exponents for the conductivity of random resistor lattices. Phys Rev B 15:5733–5737

    Article  ADS  Google Scholar 

  • Straley JP, Kenkel SW (1984) Percolation theory for nonlinear conductors. Phys Rev B 29:6299–6305

    Article  ADS  Google Scholar 

  • Taitelbaum H, Havlin S (1988) Superconductivity exponent for the Sierpinski gasket. J Phys A 21:2265–2271

    Article  ADS  Google Scholar 

  • Telcs A (2006) The art of random walks. Lecture notes in mathematics vol 1885. Springer, Berlin

    Google Scholar 

  • Temkin DE (1972) One-dimensional random walks in a two-component chain. Sov Math Dokl 13:1172–1176

    MathSciNet  MATH  Google Scholar 

  • Thorpe MF (1982) Bethe lattices. In: Thorpe MF (ed) Excitations in disordered systems. Plenum, New York, pp 85–107

    Google Scholar 

  • Torquato S (2002) Random heterogeneous materials: microstructure and macroscopic properties. Springer, New York

    Book  MATH  Google Scholar 

  • Torquato S, Kim IC, Kule D (1999) Effective conductivity, dielectric constant, and diffusion coefficient of digitized composite media via first-passage-time equations. J Appl Phys 85:1560–1571

    Article  ADS  Google Scholar 

  • Varadhan SRS (2004) Random walks in a random environment. Proc Indian Acad Sci (Math Sci) 114:309–318

    Article  MathSciNet  MATH  Google Scholar 

  • Werner W (2009) Lectures on two-dimensional critical percolation. In: Sheffield S, Spencer T (eds) Statistical mechanics. American Mathematical Society, Providence, pp 297–360

    Google Scholar 

  • Wiener O (1912) Die Theorie des Mischkörpers für das Feld des stationären Strömung. Abh Mathematisch-Phys Kl K Sächs Ges Wiss 32:509–604

    Google Scholar 

  • Woess W (2000) Random walks on infinite graphs and groups. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Zabolitzky JG (1984) Monte Carlo evidence against the Alexander-Orbach conjecture for percolation conductivity. Phys Rev B 30:4076–4079

    Article  ADS  Google Scholar 

  • Zeitouni O (2002) Random walks in random environments. In: Daquien LI (ed) Proceedings of the International Congress of Mathematicians, vol 3. Higher Education Press, Beijing, pp 117–127

    Google Scholar 

  • Zeitouni O (2004) Random walks in random environment. In: Tavare S, Zeitouni O (eds) Lectures on probability and statistics (Ecole d’Ete de probabilités de Saint-Flour XXXI). Lecture notes in mathematics vol 1837. Springer, Berlin, pp 1–188

    Google Scholar 

  • Zeitouni O (2006) Random walks in random environments. J Phys A 39:R433–R464

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ziman J (1968) The localization of electrons in ordered and disordered systems. I. Percolation of classical particles. J Phys C 1:1532–1538

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry D. Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hughes, B.D. (2014). Conduction and Diffusion in Percolating Systems. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_93-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_93-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Conduction and Diffusion in Percolating Systems
    Published:
    04 December 2020

    DOI: https://doi.org/10.1007/978-3-642-27737-5_93-3

  2. Original

    Conduction and Diffusion in Percolating Systems
    Published:
    26 December 2014

    DOI: https://doi.org/10.1007/978-3-642-27737-5_93-2