Skip to main content

Triple Module Redundancy of a Laser Array Driver Circuit for Optically Reconfigurable Gate Arrays

  • Conference paper
Reconfigurable Computing: Architectures, Tools and Applications (ARC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7199))

Included in the following conference series:

  • 1291 Accesses

Abstract

Demand is increasing daily for a robust field programmable gate array that is useful for operations performed in a radiation-rich space environment, such as those of spacecraft, space satellites, and space stations. Optically reconfigurable gate arrays (ORGAs) are under development as robust field programmable gate arrays. Their holographic memories can generate correct configuration contexts at any time, even if up to 20 % of the holographic memory data are damaged. However, up to now, a soft error effect for a laser array on ORGA devices has never been discussed. Therefore, this paper first presents a proposal of a method to find an unexpected configuration procedure caused by a laser array driver circuit facing a soft error on conventional ORGA architectures and to recover from such a procedure. Then this paper presents a proposal of a new robust laser array driver circuit that is applicable for any ORGA architecture, which can perfectly remove the unexpected configuration procedure itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Visser, S.J., Dawood, A.S., Williams, J.A.: FPGA based real-time adaptive filtering for space applications. In: IEEE International Conference on Field-Programmable Technology, pp. 322–326 (2002)

    Google Scholar 

  2. Miller, G., Carmichael, C.: Single-Event Upset Mitigation for Xilinx FPGA Block Memories, XILINX Application Note, Virtex-II FPGAs (2007)

    Google Scholar 

  3. Nejad, R.J., Rickey, P.A., Konadu, K., Stapor, W.J., McDonald, P.T., Heidergott, W.: Radiation Characterization of a Hardened 0.22 μ m Anti-Fuse Field Programmable Gate Array. IEEE Transactions on Nuclear Science 53(6), Part I, 3525–3531

    Google Scholar 

  4. Fay, D., Shye, A., Bhattacharya, S., Connors, D.A.D., Wichmann, S.: An Adaptive Fault-Tolerant Memory System for FPGA-based Architectures in the Space Environment. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 250–257 (2007)

    Google Scholar 

  5. Redant, S., Marec, R., Baguena, L., Liegeon, E., Soucarre, J., Van Thielen, B., Beeckman, G., Ribeiro, P., Fernandez-Leon, A., Glass, B.: Radiation Test Results on First Silicon in the Design Against Radiation Effects (DARE) Library. IEEE Trans. on Nuclear Science 52(5), 1550–1554 (2005)

    Article  Google Scholar 

  6. Schwank, J.R., Shaneyfelt, M.R., Fleetwood, D.M., Felix, J.A., Dodd, P.E., Paillet, P., Ferlet-Cavrois, V.: Radiation Effects in MOS Oxides. IEEE Transactions on Nuclear Science 55(4), 1833–1853 (2008)

    Article  Google Scholar 

  7. Redant, S., Marec, R., Baguena, L., Liegeon, E., Soucarre, J., Van Thielen, B., Beeckman, G., Ribeiro, P., Fernandez-Leon, A., Glass, B.: Radiation Test Results on First Silicon in the Design Against Radiation Effects (DARE) Library. IEEE Trans. on Nuclear Science 52(5), 1550–1554 (2005)

    Article  Google Scholar 

  8. Makihara, A., Sakaide, Y., Tsuchiya, Y., Arimitsu, T., Asai, H., Iide, Y., Shindou, H., Kuboyama, S., Matsuda, S.: Single-Event Effects in 0.18 um CMOS Commercial Processes. IEEE Trans. on Nuclear Science 50(6), 2135–2138 (2003)

    Article  Google Scholar 

  9. Ikeda, N., Shindou, H., Iide, Y., Asai, H., Kubo, S., Matsuda, S.: Evaluation of the Errors of Commercial Semiconductor Devices in a Space Radiation Environment. Trans. of the Institute of Electronics, Information and Communication Engineers. B J88-B(1), 108–116 (2005)

    Google Scholar 

  10. Lin, Y., He, L.: Devices and architecture concurrent optimization for FPGA transient soft error rate. In: International Conference on Computer Aided Design (2007)

    Google Scholar 

  11. Lin, Y., He, L.: Device and architecture concurrent optimization for FPGA transient soft error rate. In: International Conference on Computer-Aided Design, pp. 194–198 (2007)

    Google Scholar 

  12. Stroud, C.E.: Reliability of Majority Voting Based VLSI Fault-Tolerant Circuits. IEEE Trans. on VLSI Systems 2(4), 516–521 (1994)

    Article  Google Scholar 

  13. Radu, M., Pitica, D., Posteuca, C.: Reliability and failure analysis of voting circuits in hardware redundant design. In: International Symposium on Electronic Materials and Packaging, pp. 421–423 (2000)

    Google Scholar 

  14. Seto, D., Watanabe, M.: A dynamic optically reconfigurable gate array - perfect emulation. IEEE Journal of Quantum Electronics 44(5), 493–500 (2008)

    Article  Google Scholar 

  15. Nakajima, M., Watanabe, M.: Optical buffering technique under space radiation environment. Optics Letters 34(23), 3719–3721 (2009)

    Article  Google Scholar 

  16. Nakajima, M., Watanabe, M.: A four-context optically differential reconfigurable gate array. IEEE/OSA Journal of Lightwave Technology 27(24) (2009)

    Google Scholar 

  17. Seto, D., Watanabe, M.: Recovery method for a turn-off failure mode of a laser array on an ORGA. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 242–247 (2010)

    Google Scholar 

  18. Toishi, M., Okamoto, A., Honma, S., Bunsen, M.: Fault-tolerant holographic memory with two photrefractive crystals. In: Pacific Rim Conference on Lasers and Electro-Optics, vol. 2, pp. 160–161 (2001)

    Google Scholar 

  19. Coufal, H.J., Psaltis, D., Sincerbox, G.T.: Holographic Data Storage. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watanabe, T., Watanabe, M. (2012). Triple Module Redundancy of a Laser Array Driver Circuit for Optically Reconfigurable Gate Arrays. In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2012. Lecture Notes in Computer Science, vol 7199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28365-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28365-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28364-2

  • Online ISBN: 978-3-642-28365-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics