Skip to main content

Sol–Gel Carrier System: A Novel Controlled Drug Delivery

  • Chapter
  • First Online:
Patenting Nanomedicines

Abstract

In the recent decades, numerous drug delivery systems based on nanoparticles have been developed. To deliver drugs to a specific site, many vehicles have been designed, including liposomes, lipid and polymeric nanoparticles. However these systems can suffer some limitations such as thermal and physical instability as well as opsonization by reticuloendothelial system. This chapter addresses the development and application of silica gel nanoparticles (nanogels) for drug delivery. The synthesis of nanoparticles by sol–gel technology offers new possibilities and many advantages for embedding organic compounds within silica, controlling their release from the host matrix into a surrounding medium, being a great potential for a variety of drug delivery applications, such as the site-specific delivery and intracellular controlled release of drugs, genes, and other therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahola M, Kortesuo P, Kangasniemi I, Kiesvaara J, Yli-Urpo A (2000) Silica xerogel carrier material for controlled release of toremifene citrate. Int J Pharm 195(12):219–227

    Article  Google Scholar 

  • Ahola M, Saeilynoja E, Salonen J, Penttinen R, Yli-Urpo A (2001) Novel compositions for controlled release of biologically active, and the preparation thereof. World Patent No. 01 /13294

    Google Scholar 

  • Albarrana L, Lópeza T, Quintanac P, Chagoya V (2011) Controlled release of IFC-305 encapsulated in silica nanoparticles for liver cancer synthesized by sol–gel. Colloid Surface Physicochem Eng Aspect 384(1–3):131–136

    Article  Google Scholar 

  • Andrade JD, Hlady V, Jeon SI (1996) Poly (ethylene oxide) and protein resistance: principles, problems, and possibilities. Adv Chem Ser 248:51–59

    Article  Google Scholar 

  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliv Rev 60(11):1266–1277

    Article  Google Scholar 

  • Barbe C, Bartlett J (2008) Controlled release ceramic particles, compositions thereof, process of preparation and methods of use. United States Patent No. 2008/0274199 A1

    Google Scholar 

  • Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, Calleja S, Bush A, Calleja G (2004) Silica particles: a novel drug-delivery system. Adv Mater 16(21):1959–1966

    Article  Google Scholar 

  • Bawa R (2007) Patents and nanomedicine. Nanomedicine 2(3):351–374

    Article  Google Scholar 

  • Bawa R (2009) Nanopharmaceuticals. In: Luscombe D, Stonier PD (eds) Clinical research manual supplement 27, 2nd edn. Euromed Communications, England

    Google Scholar 

  • Bawa R, Melethil S, Simmons WJ, Harris D (2008) Nanopharmaceuticals: patenting issues and FDA regulatory challenges. The SciTech Lawyer 5(2):10–15

    Google Scholar 

  • Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous Sol–gel process for protein encapsulation. Chem Mater 12:2434–2441

    Article  Google Scholar 

  • Brannon-Peppas L, Birnbaum DT, Kosmala JD (1997) Polymers in controlled release: targeted delivery. Polymer News 22:316–318

    Google Scholar 

  • Buckley AM, Greenblatt M (1994) The sol gel preparation of silica gels. J Chem Educ 71:599–602

    Article  Google Scholar 

  • Cauda V, Engelke H, Sauer A, Arcizet D, Brauchle C, Radler J, Bein T (2010) Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Lett 10:2484–2492

    Article  Google Scholar 

  • Costache MC, Qu H, Ducheyne P, Devore DI (2011) Polymer-xerogel composites for controlled release wound dressings. Biomaterials 31(24):6336–6343

    Article  Google Scholar 

  • Dahan A, Hoffman A (2008) Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. J Control Rel 129(1):1–10

    Article  Google Scholar 

  • Deng Z, Zhen Z, Xiaoxi Hu X, Wu S, Xu Z, Chu PK (2011) Hollow chitosan silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32(21):4976–86

    Article  Google Scholar 

  • Depan D, Saikia L, Singh RP (2010) Ultrasound-triggered release of ibuprofen from a chitosan-mesoporous silica composite—a novel approach for controlled drug release. Macromol Symp 287(1):80–88

    Article  Google Scholar 

  • Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  Google Scholar 

  • Du H, Hamilton PD, Reilly MA, D’Avignon A, Biswas P, Ravi N (2009) A facile synthesis of highly water-soluble, core–shell organo-silica nanoparticles with controllable size via sol–gel process. J Colloid Interface Sci 340:202–208

    Article  Google Scholar 

  • Ducheyne P, Cheyne P, Heyne P, Radin S, Santos EM (1996) Incorporation of biologically active molecules into bioactive glasses. World Patent No. 96/03117

    Google Scholar 

  • Dwivedi N, Arunagirinathan MA, Sharma S, Bellare J (2010) Silica-coated liposomes for insulin delivery. J Nanomater 1–8

    Google Scholar 

  • Fay F, Scott CJ (2011) Antibody-targeted nanoparticles for cancer therapy. Immunotherapy 3(3):381–394

    Article  Google Scholar 

  • Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. TIBTECH 18:282–296

    Article  Google Scholar 

  • Gregoriades G (1989) Liposomes as drug carriers. Wiley, Chichester

    Google Scholar 

  • Hervé K, Douziech-Eyrolles KL, Munnier E, Cohen-Jonathan S, Soucé M, Marchais H, Limelette P, Warmont F, Saboungi ML, Dobois P, Chourpa I (2008) The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications. Nanotechnol 19(46):1

    Article  Google Scholar 

  • Horst B, Oberningenie OK, Joerg M (1995) Metal oxide composite with controllable release. European Patent No. 0 680 753 A2

    Google Scholar 

  • Hwang YJ, Oh C, Oh SG (2005) Controlled release of retinol from silica particles prepared in O/W/O emulsion: The effects of surfactants and polymers. J Control Release 106(3):339–349

    Article  Google Scholar 

  • Iller RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Illum L, Davis SS, Müller RH, Mak E, West P (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer—poloxamine 908. Life Sci 40:367–374

    Article  Google Scholar 

  • Iwanaga K, Ono S, Narioka K, Morimoto K, Kakemi M, Yamashita S, Nango M, Oku N (1997) Oral delivery of insulin by using surface coating liposomes: improvement of stability of insulin in GI tract. Int J Pharm 157:73–80

    Article  Google Scholar 

  • Iwer B, Holger E, Joern P, Miranda RG (2011) Silica sol material having at least one therapeutically active substance for producing biological degradable and/or resorbable silica gel materials for human medicine and/or medical technology. European Patent No. 2303948 (A1)

    Google Scholar 

  • Jafarzadeh M, Rahman IA, Sipaut CS (2009) Synthesis of silica nanoparticles by modified sol–gel process: the effect of mixing modes of the reactants and drying techniques. J Sol–gel Sci Technol 50:328–336

    Article  Google Scholar 

  • Jokinen M, Viitala R, Jalonen H (2005) Method for preparing adjustable bioresorbable sol–gel derived SiO2. World Patent No.2005082781

    Google Scholar 

  • Jokinen M, Jalonen H, Forsback A, Koskinen M (2010) Method for preparing silica compositions and uses thereof. United States Patent No.2010/0119500

    Google Scholar 

  • Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao JX, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50(1):147–160

    Article  Google Scholar 

  • Karajgi J, Jain NK, Vyas SP (1993) Passive vectoring of a colloidal carrier system for sodium stibogluconate: preparation, characterization and performance evaluation. J Drug Target 3:197–206

    Article  Google Scholar 

  • Kesisoglou F, Panmai S, Wu Y (2007) Nanosizing-oral formulation development and biopharmaceutical evaluation. Adv Drug Del Rev 59:631–644

    Article  Google Scholar 

  • Kisel MA, Kulik LN, Tsybovsky IS, Vlasov AP, Vorob’yov MS, Kholodova EA, Zabarovskaya ZV (2001) Liposomes with phosphatidylethanol as a carrier for oral delivery of insulin: studies in the rat. Int J Pharm 216:105–114

    Article  Google Scholar 

  • Kortesuo P, Ahola M, Kangas M, Yli-Urpo A, Kiesvaara J, Marvola M (2001) In vitro release of dexmedetomidine from silica xerogel monoliths: effect of sol–gel synthesis parameters. Inter J Phar 221:107–114

    Article  Google Scholar 

  • Kortesuo P, Ahola M, Minna K, Mika J, Tiina L, Lauri V et al (2002) Effect of synthesis parameters of the sol–gel-processed spray-dried silica gel microparticles on the release rate of dexmedetomidine. Biomaterials 23(13):2795–2801

    Article  Google Scholar 

  • Koskinen M, Saeilynoja E, Ahola M, Jalonen H, Salonen J, Kaehaeri V (2001) Biodegradable carrier and method for preparation thereof. World Patent No. 02080977

    Google Scholar 

  • Kunarti ES, Moran GM (2008) Entrapment of avidin in sol–gel derived silica glasses. J Phys Sci 19(2):31–44

    Google Scholar 

  • Lapidot N, Magdassi S, Avnir D, Rottman C, Gans O, Seri-Levy A (2001) Sunscreen composition containing sol–gel microcapsules. United States Patent No. 6,238,650

    Google Scholar 

  • Lapidot N, Magdassi S, Avnir D, Rottman C, Gans O, Seri-Levy A (2010) Composition exhibiting enhanced formulation stability and delivery of topical active ingredients. United States Patent No. 60/198,749

    Google Scholar 

  • Lee S-M, Chen H, Dettmer CM, O’Halloran TV, Nguyen ST (2007) Polymer-caged lipsomes: a pH-responsive delivery system with high stability. J Am Chem Soc 129:15096–15097

    Article  Google Scholar 

  • Li X, Ding L, Xu Y, Wang Y, Ping Q (2009) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123

    Article  Google Scholar 

  • Lincopan N, Santana MRA, Faquim-Mauro E, da Costa MHB, Carmona-Ribeiro AM (2009) Silica-based cationic bilayers as immunoadjuvants. BMC Biotechnol 9:5. doi:10.1186/1472-6750-9-5

    Article  Google Scholar 

  • Martens J, Van Den Mooter G, Van Humbeeck J, Mellaerts R (2007) Controlled release delivery system for bio-active agents. United States Patent No. 2007/0275068 A1

    Google Scholar 

  • Martini A, Ciocca C (2003) Drug delivery systems for cancer drugs. Expert Opin Ther Pat 13(12):1801–1807

    Article  Google Scholar 

  • Mohanraj VJ, Barnes TJ, Prestidge CA (2010) Silica nanoparticles coated liposomes: a new type of hybrid nanocapsule for proteins. Int J Pharm 392(1–2):285–293

    Article  Google Scholar 

  • Nishihama S (2001) Metal oxide/silica composite, and a cosmetic preparation comprising thereof. United States Patent No. 6,949,248

    Google Scholar 

  • Perro A, Reculusa S, Bourgeat-Lami E, Duguet E, Ravaine S (2006) Synthesis of hybrid colloidal particles: from snowman-like to raspberry-like morphologies. Colloid Surf A 284(285):78–83

    Article  Google Scholar 

  • Porter CJH, Pouton CW, Cuine JF, Charman WN (2008) Enhancing intestinal drug solubilization using lipid -based delivery systems. Adv Drug Delivery Rev 60(6):673–691

    Article  Google Scholar 

  • Prokopowicz M (2009) Correlation between physicochemical properties of doxorubicin-loaded silica/polydimethylsiloxane xerogel and in vitro release of drug. Acta Biomaterials 5:193–207

    Article  Google Scholar 

  • Prokopowicz M, Łukasiak J (2010) Synthesis and in vitro characterization of freeze-dried doxorubicin-loaded silica/PEG composite. J Non-Crystall Sol 356:1711–1720

    Article  Google Scholar 

  • Radin S, Ducheyne P, Kamplain T, Tan BH (2001) Silica sol–gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release. J Biomed Mater Res 57(2):313–320

    Article  Google Scholar 

  • Rahman IA, Vejayakumaran P, Sipaut CS, Ismail J, Abu Bakar M, Adnan R, Chee CK (2004) An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloid Surface Physicochem Eng Aspect 294:102–110

    Article  Google Scholar 

  • Rio-Echevarria IM, Selvestrel F, Daniela Segat D, Guarino G, Tavano R, Causin V, Reddi E, Papini E, Mancin F (2010) Highly PEGylated silica nanoparticles: “ready to use” stealth functional nanocarriers. J Mater Chem 20:2780–2787

    Article  Google Scholar 

  • Ritger PL, Peppas N (1987) Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres cylinders or discs. J Control Release 5:23–36

    Article  Google Scholar 

  • Rosen M (1989) Surfactants and interfacial phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  • Rosen H, Abribat T (2005) The rise of drug delivery. Nat Rev Drug Discov 4:381–385

    Article  Google Scholar 

  • Ryan SM, Mantovani G, Wang XX, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5(4):371–383

    Article  Google Scholar 

  • Sato S, Murakata T, Suzuki T, Ohgawara T (1990) Control of pore size distribution of silica gel through sol–gel process using water soluble polymers as additives. J Mater Sci 254:4880–4885

    Article  Google Scholar 

  • Seop KG, Geun LY, Chang YY (2001) Powder color cosmetic containing pigment coated with silica. Patent No. KR 20010057526

    Google Scholar 

  • Shi ZG, Guo QZ, Liu YT, Xiao YX, Xu L (2011) Drug delivery devices based on macroporous silica spheres. Mater Chem Phys 126(3):826–831

    Article  Google Scholar 

  • Silva CS, Airoldi C (1997) Acid and base catalysts in the hybrid silica sol–gel process. J Colloidal Interface Sci 195:381–387

    Article  Google Scholar 

  • Simovic S, Heard P, Hui H, Song Y, Peddie F, Davey AK, Lewis A, Rades T, Prestidge CA (2009) Dry hybrid lipid-silica microcapsules engineered from submicron lipid droplets and nanoparticles as a novel delivery system for poorly soluble drugs. Mol Pharm 6(3):861–872

    Article  Google Scholar 

  • Singh KP, Panwar P, Kohli P (2011) Liposome-mesoporous silica nanoparticles fused cores: a safer mode of drug carrier. J Biomed Nanotechnol 7(1):60–62, 63

    Article  Google Scholar 

  • Tan BH, Santos EM, Ducheyne P (1996) Ultramicroscopic pore size and porosity of xerogels for controlled release of biological molecules. Fifth World Biomaterials Congress, Toronto

    Google Scholar 

  • Tan A, Simovic S, Davey AK, Rades T, Prestidge CA (2009) Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs. J Control Release 134(1):62–70

    Article  Google Scholar 

  • Teng Z, Han Y, Li J, Yan F, Yang W (2010) Preparation of hollow mesoporous silica spheres by a sol–gel/emulsion approach. Micro Meso Mater 127:67–72

    Article  Google Scholar 

  • Traynor DH, Taynor HG, Markowitz SM, Compton DL (2005) Bodywash additives. United States Patent No. 60/648,961

    Google Scholar 

  • Unger K, Rupprecht H, Valentin B, Kircher W (1983) The use of porous and surface modified silicas as drug delivery and stabilizing agent. Drug Dev Ind Pharm 9:69–91

    Article  Google Scholar 

  • Wang J, Yang X (2008) Raspberry-like polymer/silica core-corona composite by self-assemble heterocoagulation based on a hydrogen-bonding interaction. Colloid Polym Sci 286:283–291

    Article  Google Scholar 

  • Wu Z, Joo H, Lee TG, Lee K (2005) Controlled release of lidocaine hydrochloride from the surfactant-doped hybrid xerogels. J Control Release 104:497–505

    Article  Google Scholar 

  • Yagüe C, Morosa M, Grazúa V, Arruebo M, Santamaría J (2008) Synthesis and stealthing study of bare and PEGylated silica micro- and nanoparticles as potential drug-delivery vectors. Chem Eng J 137(1):45–53

    Article  Google Scholar 

  • Yan E, Fu Y, Wang X, Ding Y, Qian H, Wang C, Hu Y, Jiang X (2011) Hollow chitosan–silica nanospheres for doxorubicin delivery to cancer cells with enhanced antitumor effect in vivo. J Mater Chem 21:3147

    Article  Google Scholar 

  • Yogeshkumar M, Marilena L, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  Google Scholar 

  • Yuichi T, Eri S, Hirofumi T (2010) Release profile of insulin entrapped on mesoporous materials by freeze–thaw method. Inter J of Pharm 386:172–177

    Article  Google Scholar 

  • Zhang K, Chen HT, Chen X, Chen ZM, Cui ZC, Yang B (2003) Monodisperse silica-polymer core-shell microspheres via surface grafting and emulsion polymerization. Macromol Mater Eng 288:380–385

    Article  Google Scholar 

  • Zhang C, Hou TA, Chen JF, Wen LX (2010) Preparation of mesoporous silica microspheres with multi-hollow cores and their application in sustained drug release. Particuology 8(5):447–452

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Portuguese Science and Technology Foundation (FCT) under the reference PTDC/SAU-FAR/113100/2009. Ana Luiza R. de Souza was sponsored by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). Tatiana Andreani was sponsored by FCT (SFRH/BD/60640/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana B. Souto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andreani, T., de Souza, A.L.R., Silva, A.M., Souto, E.B. (2012). Sol–Gel Carrier System: A Novel Controlled Drug Delivery. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_5

Download citation

Publish with us

Policies and ethics