Skip to main content

The Family Beijerinckiaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

To date there are only 18 established species in the family Beijerinckiaceae and only 12 if outgroup members are not taken into account. This small number does not impede to consider them quite interesting from the metabolic and evolutionary point of view since it encompasses from obligate methanotrophs to chemoorganoheterotrophs, plus examples of the intermediate states: facultative methylotrophs and facultative methanotrophs. Nitrogen fixation is another remarkable trait of the family, enabling them to thrive in habitats in which other potential sources of nitrogen are scarce. Their global distribution is wide, with a preference for acidic soils of tropical regions (in the case of Beijerinckia) or of temperate and even polar regions in the case of Methylocapsa, Methylocella, Methyloferula, Methylorosula, and Methylovirgula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altson RA (1936) Studies on Azotobacter in Malayan soils. J Agric Sci Camb 26:268–280

    Article  Google Scholar 

  • Amor Asunción JM, Frontera G, Dellepiane E (1980) Species of the genus Beijerinckia Derx isolated from a soil of Corrientes (Argentina). Rev Argent Microbiol 12:23–28

    PubMed  Google Scholar 

  • Anderson GR (1966) Identification of Beijerinckia from Pacific Northwest soils. J Bacteriol 91:2105–2106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auling G, Busse HJ, Egli T, El-Banna T, Stackebrandt E (1993) Description of the gram-negative, obligately aerobic, nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii, gen. nov., sp. nov., and Chelatococcus asaccharovorans, gen. nov., sp. nov. Syst Appl Microbiol 16:104–112

    Article  Google Scholar 

  • Babbitt CW, Pacheco A, Lindner AS (2009) Methanol removal efficiency and bacterial diversity of an activated carbon biofilter. Bioresour Technol 100:6207–6216

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Baldani VL (2005) History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An Acad Bras Cienc 77:549–579

    Article  CAS  PubMed  Google Scholar 

  • Barooah PP, Sen A (1959) Studies on Beijerinckia from some acid soil in India. Indian J Agric Sci 29:36–51

    Google Scholar 

  • Becking JH (1959) Nitrogen-fixing bacteria of the genus Beijerinckia in South African Soils. Plant Soil 11:193–206

    Article  Google Scholar 

  • Becking JH (1961) Studies on nitrogen-fixing bacteria of the genus Beijerinckia. I. Geographical and ecological distribution in soils. Plant Soil 14:49–81

    Article  CAS  Google Scholar 

  • Becking JH (2006) The genus Beijerinckia. In: Rosenberg E, Stackebrandt E, Thompson F, Lory S, DeLong E (eds) The Prokaryotes, vol 5, 3rd edn, Proteobacteria—alpha and beta subclasses. Springer, Berlin/Heidelberg, pp 151–162

    Chapter  Google Scholar 

  • Berestovskaya JJ, Vasil’eva LV, Chestnykh OV, Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the Russian Arctic tundra. Mikrobiologiia 71:538–544

    Google Scholar 

  • Berestovskaya JJ, Kotsyurbenko OR, Tourova TP, Kolganova TV, Doronina NV, Golyshin PN, Vasilyeva LV (2012) Methylorosula polaris gen. nov., sp. nov., an aerobic, facultatively methylotrophic psychrotolerant bacterium from tundra wetland soil. Int J Syst Evol Microbiol 62:638–646

    Article  CAS  PubMed  Google Scholar 

  • Boza Y, Barbin D, Scamparini AR (2003) Activity and survival of spray-dried Beijerinckia sp. microencapsulated in different carbohydrates. Appl Biochem Biotechnol 111:113–128

    Article  CAS  PubMed  Google Scholar 

  • Cébron A, Bodrossy L, Chen Y, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. FEMS Microbiol Ecol 62:12–23

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Dumont MG, Cébron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9:2855–2869

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Stralis-Pavese N, Murrell JC (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 10:446–459

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, Alam M, Theisen AR, Murrell JC, Dunfield PF (2010) Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol 192:3840–3841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Patel NA, Crombie A, Scrivens JH, Murrell JC (2011) Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci U S A 108:17791–17796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dedysh SN, Dunfield PF (2011) Facultative and obligate methanotrophs how to identify and differentiate them. Methods Enzymol 495:31–44

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Panikov NS, Liesack W, Grosskopf R, Zhou J, Tiedje JM (1998a) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282:281–284

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Panikov NS, Tiedje JM (1998b) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Derakshani M, Liesack W (2001a) Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including the use of newly developed oligonucleotide probes for Methylocella palustris. Appl Environ Microbiol 67:4850–4857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dedysh SN, Horz HP, Dunfield PF, Liesack W (2001b) A novel pmoA lineage represented by the acidophilic methanotrophic bacterium Methylocapsa acidiphila [correction of acidophila] B2. Arch Microbiol 177:117–121

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Dunfield PF, Derakshani M, Stubner S, Heyer J, Liesack W (2003) Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43:299–308

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA (2004a) Methylocella tundrae sp. nov., a methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54:151–156

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Ricke P, Liesack W (2004b) NifH and nifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313

    Article  CAS  PubMed  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005a) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dedysh SN, Smirnova KV, Khmelenina VN, Suzina NE, Liesack W, Trotsenko YA (2005b) Methylotrophic autotrophy in Beijerinckia mobilis. J Bacteriol 187:3884–3888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derx HG (1950a) Beijerinckia, a new genus of nitrogen-fixing bacteria occurring in tropical soils. Proc Kon Nederl Akad Wetensch Ser C 53:140–147

    CAS  Google Scholar 

  • Derx HG (1950b) Further research on Beijerinckia. Ann Bogoriensis 1:1–11

    Google Scholar 

  • Diem HG, Schmidt EL, Dommergues YR (1978) The use of the fluorescent antibody technique to study the behavior of a Beijerinckia isolate in the rhizosphere and spermosphere of rice. In: Granhall U (ed) Environmental role of nitrogen-fixing blue-green algae and asymbiotic bacteria, vol 26, Ecological bulletins. Sweden, Stockholm, pp 312–318

    Google Scholar 

  • Döbereiner J (1959a) Sobre a ocorrência de Beijerinckia em alguns solos do Brasil. Rev Bras Biol 19:151–160

    Google Scholar 

  • Döbereiner J (1959b) Influência da cana-de-açúcar na população de Beijerinckia do solo. Rev Bras Biol 19:251–258

    Google Scholar 

  • Döbereiner J (1961) Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane. Plant Soil 15:211–216

    Article  Google Scholar 

  • Döbereiner J, Alvahydo R (1959) Sôbre a influência da cana-de-açúcar na ocorrência de “Beijerinckia” no solo. Rev Bras Biol 19:401–412

    Google Scholar 

  • Döbereiner J, Castro AF (1955) Ocorrência e capacidade de fixação de nitrogênio de bactérias do gênero Beijerinckia nas séries de solos da área territorial do Centro nacional de ensino e pesquisas agronômicas. Bol Inst Ecol Exp Agric 16:1–18

    Google Scholar 

  • Döbereiner J, Ruschel AP (1958) Uma nova espécie de Beijerinckia. Rev Biol 1:261–272

    Google Scholar 

  • Döbereiner J, Ruschel AP (1961) Inoculação do arroz com bactérias fixadoras de nitrogênio do gênero Beijerinckia Derx. Rev Bras Biol 21:397–407

    Google Scholar 

  • Döbereiner J, Day JM, Dart PJ (1972) Nitrogenase activity in the rhizosphere of sugarcane and some other tropical grasses. Plant Soil 37:191–196

    Article  Google Scholar 

  • Döbereiner J, Day JM, Dart PJ (1973) Fixação de nitrogênio na rizosfera de Paspalum notatum e da cana-de-açúcar. Pesq Agropec Bras Ser Agron 8:153–157

    Google Scholar 

  • Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Belova SE, Vorob’ev AV, Cornish SL, Dedysh SN (2010) Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa. Int J Syst Evol Microbiol 60:2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Egli T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol Sci 5:36–41

    CAS  PubMed  Google Scholar 

  • Egli T (2001) Biodegradation of metal-complexing aminopolycarboxylic acids. J Biosci Bioeng 92:89–97

    Article  CAS  PubMed  Google Scholar 

  • Egli TW, Auling G (2005) Genus II. Chelatococcus Auling, Busse, Egli, El-Banna and Stackebrandt 1993b. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, pp 433–437

    Chapter  Google Scholar 

  • Fang J, Barcelona MJ, Semrau JD (2000) Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189:67–72

    Article  CAS  PubMed  Google Scholar 

  • Farrell ID (1974) The development of a new selective medium for the isolation of Brucella abortus from contaminated sources. Res Vet Sci 16:280–286

    CAS  PubMed  Google Scholar 

  • Fredrickson JK, Li SM, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family VI. Beijerinckiaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, 422

    Google Scholar 

  • Gibson DT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun 50:211–219

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Smemo KA, Yavitt JB, Basiliko N (2012) Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Microb Ecol 63:438–445

    Article  CAS  PubMed  Google Scholar 

  • Han B, Chen Y, Abell G, Jiang H, Bodrossy L, Zhao J, Murrell JC, Xing XH (2009) Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. FEMS Microbiol Ecol 70:40–51

    Article  PubMed  CAS  Google Scholar 

  • Hegazi NA, Ayoub S (1979) Microbiological examination of some Sudanese soils. Zentralbl Bakteriol Naturwiss 134:536–543

    CAS  PubMed  Google Scholar 

  • Hilger F (1965) Études sur la systématique du genre Beigerinckia Derx. Ann de l’Inst Pasteur Paris 109:406–423

    CAS  Google Scholar 

  • Ibrahim MH, Steinbüchel A (2010) High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 76:7890–7895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim MH, Willems A, Steinbüchel A (2010) Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. J Appl Microbiol 109:1579–1590

    CAS  PubMed  Google Scholar 

  • Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ER (2006) Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra). Environ Microbiol 8:2224–2230

    Article  CAS  PubMed  Google Scholar 

  • Jackson CR, Denney WC (2011) Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia (Magnolia grandiflora). Microb Ecol 61:113–122

    Article  PubMed  Google Scholar 

  • Jendrossek D, Selchow O, Hoppert M (2007) Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum. Appl Environ Microbiol 73:586–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeon HJ, Kim MN (2013) Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation. Biodegradation 24:89–98

    Article  CAS  PubMed  Google Scholar 

  • Jordan DC, McNicol PJ (1978) Identification of Beijerinckia in the High Arctic (Devon Island, Northwest Territories). Appl Environ Microbiol 35:204–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kämpfer P, Scholz HC, Langer S, Wernery U, Wernery R, Johnson B, Joseph M, Lodders N, Busse HJ (2010) Camelimonas lactis gen. nov., sp. nov., isolated from the milk of camels. Int J Syst Evol Microbiol 60:2382–2386

    Article  PubMed  CAS  Google Scholar 

  • Kämpfer P, Scholz HC, Lodders N, Loncaric I, Whatmore AM, Busse HJ (2012) Camelimonas abortus sp. nov., isolated from placental tissue of cattle. Int J Syst Evol Microbiol 62:1117–1120

    Article  PubMed  CAS  Google Scholar 

  • Karkhanis R (1987) Effect of pH on growth and dinitrogen fixing capacity of rhizosphere and intra-cortical Beijerinckia spp. Biovigyanam Pune India 13:60–62

    Google Scholar 

  • Karkhanis R, Tikhe PR (1980) Invasion of root cortex of rice (Oryza sativa L.) by Beijerinckia indica. Curr Sci India 49:949–950, Bangalore

    Google Scholar 

  • Kauffmann J, Toussaint P (1951a) Un nouveau germe fixateur de l’azote atmosphérique: Azotobacter lacticogenes. C R des Séances de l’Acad Sci Paris 223:710–711

    Google Scholar 

  • Kauffmann J, Toussaint P (1951b) Un nouveau germe fixateur de l’azote atmosphérique: Azotobacter lacticogenes. Rev Gén de Botanique 58:553–561

    Google Scholar 

  • Kennedy C (2005) Genus I. Beijerinckia Derx 1950a. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, pp 423–432

    Chapter  Google Scholar 

  • Khan AA, Wang RF, Cao WW, Franklin W, Cerniglia CE (1996) Reclassification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Beijerinckia sp. strain B1, as Sphingomonas yanoikuyae by fatty acid analysis, protein pattern analysis, DNA-DNA hybridization, and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:466–469

    Article  CAS  PubMed  Google Scholar 

  • Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria (1990 Revision). Bacteriological code. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Lau E, Ahmad A, Steudler PA, Cavanaugh CM (2007) Molecular characterization of methanotrophic communities in forest soils that consume atmospheric methane. FEMS Microbiol Ecol 60:490–500

    Article  CAS  PubMed  Google Scholar 

  • Lau E, Fisher MC, Steudler PA, Cavanaugh CM (2013) The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS One 8:e56993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KH, Yoo SH, Baek SH, Lee HG (2007) Physicochemical and biological characteristics of DEAE-derivatized PS7 biopolymer of Beijerinckia indica. Int J Biol Macromol 41:141–145

    Article  CAS  PubMed  Google Scholar 

  • Lim DH, Lee JY, Lastoskie CM (2010) Ability of Beijerinckia indica to degrade phenanthrene and reduce hydraulic conductivity. Water Sci Technol 62:2953–2960

    Article  CAS  PubMed  Google Scholar 

  • McDonald IR, Murrell CJ (1997a) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald IR, Murrell CJ (1997b) The particulate methane monooxygenase gene pmoA and its use as a functional gene probe for methanotrophs. FEMS Microbiol Lett 156:205–210

    Article  CAS  PubMed  Google Scholar 

  • Meiklejohn J (1968) New nitrogen fixers from Rhodesian soils. In: Transactions of the 9th international congress for soil science, vol 2. Adelaide, pp 141–149

    Google Scholar 

  • Miyasaka NR, Thuler DS, Floh EI, Handro W, Toledo MB, Gagioti SM, Barbosa HR (2003) During stationary phase, Beijerinckia derxii shows nitrogenase activity concomitant with the release and accumulation of nitrogenated substances. Microbiol Res 158:309–315

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  PubMed  Google Scholar 

  • Murty MG (1984) Phyllosphere of cotton as a habitat for diazotrophic microorganisms. Appl Environ Microbiol 48:713–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oggerin M, Arahal DR, Rubio V, Marín I (2009) Identification of Beijerinckia fluminensis strains CIP 106281T and UQM 1685T as Rhizobium radiobacter strains, and proposal of Beijerinckia doebereinerae sp. nov. to accommodate Beijerinckia fluminensis LMG 2819. Int J Syst Evol Microbiol 59:2323–2328

    Article  CAS  PubMed  Google Scholar 

  • Oggerin M, Rubio V, Marín I, Arahal DR (2011) The status of the species Beijerinckia fluminensis Döbereiner and Ruschel 1958. Request for an Opinion. Int J Syst Evol Microbiol 61:1757–1759

    Article  PubMed  Google Scholar 

  • Pacheco-Oliver M, McDonald IR, Groleau D, Murrell CJ, Miguez CB (2002) Detection of methanotrophs with highly divergent pmoA genes from Arctic soils. FEMS Microbiol Lett 209:313–319

    Article  CAS  PubMed  Google Scholar 

  • Panday D, Das SK (2010) Chelatococcus sambhunathii sp. nov., a moderately thermophilic alphaproteobacterium isolated from hot spring sediment. Int J Syst Evol Microbiol 60:861–865

    Article  PubMed  Google Scholar 

  • Pati BR, Sengupta S, Chandra AK (1994) Studies on the amino acids released by phyllosphere diazotrophic bacteria. Microbiol Res 149:287–290

    Article  CAS  Google Scholar 

  • Polianskaia LM, Vedina OT, Lysak LV, Zviagintsev DG (2002) The growth-promoting effect of Beijerinckia and Clostridium sp. cultures on some agricultural crops. Mikrobiologiia 71:123–129

    CAS  PubMed  Google Scholar 

  • Prince V, Simao-Beaunoir AM, Beaulieu C (2009) Amplified ribosomal DNA restriction analysis of free-living bacteria present in the headbox of a Canadian paper machine. Can J Microbiol 55:810–817

    Article  CAS  PubMed  Google Scholar 

  • Radajewski S, Webster G, Reay DS, Morris SA, Ineson P, Nedwell DB, Prosser JI, Murrell JC (2002) Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148:2331–2342

    Article  CAS  PubMed  Google Scholar 

  • Rahman MT, Crombie A, Chen Y, Stralis-Pavese N, Bodrossy L, Meir P, McNamara NP, Murrell JC (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. ISME J 5:1061–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruinen J (1956) Occurrence of Beijerinckia species in the “phyllosphere”. Nature (London) 177:220–221

    Article  Google Scholar 

  • Ruinen J (1961) The phyllosphere. Plant Soil 15:81–109

    Article  Google Scholar 

  • Scamparini A, Mariuzzo D, Fujihara H, Jacobusi R, Vendruscolo C (1997) Structural studies of CV-70 polysaccharide. Int J Biol Macromol 21:115–121

    Article  CAS  PubMed  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    Article  CAS  Google Scholar 

  • Singh DN, Tripathi AK (2011) Evaluation of the coal-degrading ability of Rhizobium and Chelatococcus strains isolated from the formation water of an Indian coal bed. J Microbiol Biotechnol 21:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD, McGowan V, Sneath PHA (1980) Approved lists of bacterial names. Int J Syst Bacteriol 30:225–420

    Article  Google Scholar 

  • Smirnova KV, Dedysh SN, Khmelenina VN, Trotsenko YA (2005) Methanol and glucose metabolism in Beijerinckia mobilis. Mikrobiologiia 74:707–710

    CAS  PubMed  Google Scholar 

  • Starkey RL, De PK (1939) A new species of Azotobacter. Soil Sci 47:329–343

    CAS  Google Scholar 

  • Surovtseva EG, Ivoĭlov VS, Beliaev SS (1999) Physiologo-biochemical properties of a strain of Beijerinckia mobilis 1phi Phn + −a degrader of polycyclic aromatic hydrocarbons. Mikrobiologiia 68:845–850

    CAS  PubMed  Google Scholar 

  • Suto T (1954) An acid-fast Azotobacter in a volcanic ash soil. Sci Rep Res Insts Tohoku Univ 6:25–31

    Google Scholar 

  • Suto T (1957) Some properties of an acid-tolerant Azotobacter, Azotobacter indicum. Tohoku J Agric Res 7:369–382

    Google Scholar 

  • Tamas I, Dedysh SN, Liesack W, Stott MB, Alam M, Murrell JC, Dunfield PF (2010) Complete genome sequence of Beijerinckia indica subsp. indica. J Bacteriol 192:4532–4533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamas I, Smirnova AV, He Z, Dunfield PF (2014) The (d)evolution of methanotrophy in the Beijerinckiaceae–a comparative genomics analysis. ISME J 8:369–382

    Google Scholar 

  • Tchan YT (1953) Studies of nitrogen-fixing bacteria. V. Presence of Beijerinckia in Northern Australia and geographic distribution of non-symbiotic nitrogen-fixing microorganisms. Proc Linnean Soc N S W 78:172–178

    Google Scholar 

  • Tchan YT (1957) Studies of nitrogen-fixing bacteria. VI. A new species of nitrogen-fixing bacteria. Proc Linnean Soc N S W 82:314–316

    Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  PubMed  Google Scholar 

  • Thompson JP (1968) The occurrence of nitrogen-fixing bacteria of the genus Beijerinckia in Australia outside the tropical zone. In: Transactions, 9th international congress of soil science, vol 2. Adelaide, pp 129–139

    Google Scholar 

  • Thompson JP, Skerman VBD (1979) Azotobacteraceae: the taxonomy and ecology of the aerobic nitrogen-fixing bacteria. Academic, London, 405 pp

    Google Scholar 

  • Thuler DS, Floh EIS, Handro W, Barbosa HR (2003) Beijerinckia derxii releases plant growth regulators and amino acids in synthetic media independent of nitrogenase activity. J Appl Microbiol 95:799–806

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26

    Article  CAS  PubMed  Google Scholar 

  • Vančura V, Abd-el-Malek Y, Zayed MN (1965) Azotobacter and Beijerinckia in the soils and rhizosphere of plants in Egypt. Folia Microbiol 10:224–228

    Article  Google Scholar 

  • Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61:2456–2463

    Article  CAS  PubMed  Google Scholar 

  • Vorob'ev AV, De Boer W, Folman LB, Bodelier PLE, Doronina NV, Suzina NE, Trotsenko YA, Dedysh SN (2009) Methylovirgula ligni gen. nov., sp. nov., an obligately acidophilic, facultatively methylotrophic bacterium with a highly divergent mxaF gene. Int J Syst Evol Microbiol 59:2538–2545

    Article  PubMed  CAS  Google Scholar 

  • Wilberg E, El-Banna T, Auling G, Egli T (1993) Serological studies on nitrilotriacetic acid (NTA)-utilizing bacteria: distribution of Chelatobacter heintzii and Chelatococcus asaccharovorans in sewage treatment plants and aquatic ecosystems. Syst Appl Microbiol 16:147–152

    Article  Google Scholar 

  • Yang Y, Huang S, Zhang Y, Xu F (2013) Nitrogen removal by Chelatococcus daeguensis TAD1 and its denitrification gene identification. Appl Biochem Biotechnol 172:829–839

    Google Scholar 

  • Yarza P, Ludwig W, Euzèby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living Tree project based on 16S and 23S-28S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  CAS  PubMed  Google Scholar 

  • Yoon JH, Kang SJ, Im WT, Lee ST, Oh TK (2008) Chelatococcus daeguensis sp. nov., isolated from wastewater of a textile dye works, and emended description of the genus Chelatococcus. Int J Syst Evol Microbiol 58:2224–2228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruiz Arahal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Marín, I., Arahal, D.R. (2014). The Family Beijerinckiaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_255

Download citation

Publish with us

Policies and ethics