Skip to main content

Gene Transfer in Legumes

  • Chapter
  • First Online:
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 74))

Abstract

In the last few decades, a large research input has been geared up to develop and exploit a number of different techniques aiming to produce plants with improved resistance to biotic and abiotic stresses, and seeds with enhanced nutritional values. Genetic transformation has proven its novelty to introduce desired characters into crop plants to cope with these challenges. Legumes posses an undeniable agronomic and eco-physiological importance, and they are a major source of proteins for food and feed, but their yield is unstable due to a number of biotic and abiotic factors and the protein quality and content in the seed does not always compare favourably with that of cereals and oil crops. This review summarizes and compares the various transformation as well as regeneration protocols used for gene transfer in legumes that would lead to the production of genetically engineered crops with improved characters, i.e., improved nutrition, resistance to biotic and abiotic factors etc. Different factors affecting the efficiency of gene transfer in legumes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adesoye AI, Togun AO, Machuka J (2010) Transformation of cowpea (Vigna unguiculata L. Walp.) by Agrobacterium infiltration. J Appl Biosci 30:1845–1860

    Google Scholar 

  • Akcay UC, Mahmoudian M, Kamci H, Yucel M, Oktem HA (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep 28:407–417

    PubMed  Google Scholar 

  • Altinkut A, Bajrovic K, Gozukirmizi N (1997) Regeneration and hairy root formation of chickpea using callus-derived plantlets and seedlings. Int Chickpea Newslett 4:30–31

    Google Scholar 

  • Anuradha TS, Jami SK, Datla RS, Kirti PB (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. J Biosci 31:235–246

    PubMed  CAS  Google Scholar 

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Google Scholar 

  • Aoki T, Kamizawa A, Ayabe S (2002) Efficient Agrobacterium-mediated transformation of Lotus japonicus with reliable antibiotic selection. Plant Cell Rep 21:238–243

    CAS  Google Scholar 

  • Aragao FGL, Rech EL (1997) Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of Carioca cultivar. Int J Plant Sci 158:157–163

    Google Scholar 

  • Aragao FJL, Barros LMG, Brasileiro ACM, Ribero SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    CAS  Google Scholar 

  • Araujo SS, Duque ASRL, dos Santos DMMF, Fevereiro MPS (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv Jemalong. Plant Cell Tissue Organ Cult 78:123–131

    CAS  Google Scholar 

  • Atanasov A, Brown DCW (1984) Plant regeneration from suspension culture and mesophyll protoplasts of Medicago sativa L. Plant Cell Tissue Organ Cult 3:149–162

    Google Scholar 

  • Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393

    CAS  Google Scholar 

  • Babaoglu M, McCabe MS, Power JB, Davey MR (2000) Agrobacterium-mediated transformation of Lupinus mutabilis L. using shoot apical explants. Acta Physiol Plant 22:111–119

    CAS  Google Scholar 

  • Barik DP, Mohapatra U, Chand PK (2005) Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep 24:523–531

    PubMed  CAS  Google Scholar 

  • Bayrac AT (2004) Optimization of a regeneration and transformation system for lentil (Lens culinaris M., cv. Sultan-I) cotyledonary petioles and epicotyls. MSc Thesis Middle East Technical University, 117 pp

    Google Scholar 

  • Bean SJ, Gooding PS, Mullineaux PM, Davies DR (1997) A simple system for pea transformation. Plant Cell Rep 16:513–519

    Google Scholar 

  • Bhargava SC, Smigocki AC (1994) Transformation of tropical grain legumes using particle bombradment. Curr Sci 66:439–442

    Google Scholar 

  • Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Narasu ML, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29:495–502

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi MJ, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    CAS  Google Scholar 

  • Bhattacharjee B, Mohan M, Nair S (2010) Transformation of chickpea: effect of genotype, explant, Agrobacterium-strain and composition of culture medium. Biol Plant 54:21–32

    Google Scholar 

  • Böhmer P, Meyer B, Jacobsen H-J (1995) Thidiazuron-induced high frequency of shoot induction and plant regeneration in protoplast derived pea callus. Plant Cell Rep 15:26–29

    Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    PubMed  CAS  Google Scholar 

  • Böttinger P, Steinmetz A, Schieder O, Pickardt T (2001) Agrobacterium-mediated transformation of Vicia faba. Mol Breed 8:243–254

    Google Scholar 

  • Braun, A.C., (1958). A physiological basis for autonomous growth of crown gall tumor cell. Proc. Natl. Acad. Sci., USA., 44: 344–9

    Google Scholar 

  • Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, Arcioni S (2007) Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Rep 26:611–615

    PubMed  CAS  Google Scholar 

  • Chabaud M, Larsonneau C, Marmouget C, Huguet T (1996) Transformation of barrel medic (Medicago truncatula Gaertn.) by Agrobacterium tumefaciens and regeneration via somatic embryogenesis of transgenic plants. Plant Cell Rep 15:305–310

    CAS  Google Scholar 

  • Chabaud M, de Carvalho NF, Barker DG (2003) Efficient transformation of Medicago truncatula cv Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1. Plant Cell Rep 22:46–51

    PubMed  CAS  Google Scholar 

  • Chabaud M, Ratet P, de Sousa Araújo S, Roldão Lopes AS, Duque A, Harrison M, Barker DG (2007) Agrobacterium tumefaciens-mediated transformation and in vitro plant regeneration of M. truncatula. In: Medicago truncatula handbook. http://www.noble.org/MedicagoHandbook/pdf/AgrobacteriumTumefaciens

  • Chakraborti D, Sarkar A, Mondal HA, Das S (2009) Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea. Transgenic Res 18:529–544

    PubMed  CAS  Google Scholar 

  • Chand PK, Ochatt SJ, Rech EL, Power JB, Davey MR (1988) Electroporation stimulates plant regeneration from protoplasts of the woody medicinal species Solanum dulcamara L. J Exp Bot 39:1267–1274

    Google Scholar 

  • Chang DC (1992) Design of protocols for electro oration and electrofusion: selection of electrical parameters. In: Chang DC, Chassy BM, Saunders JA, Sowers AE (eds) Guide to electroporation and electrofusion. Academic, San Diego, pp 429–455

    Google Scholar 

  • Chaudhury D, Madanpotra S, Jaiwal R, Saini R, Ananda PK, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci 172:692–700

    CAS  Google Scholar 

  • Chee PP, Fober KA, Slightom JL (1989) Transformation of soybean (Glycine max) by infecting germinating seeds with Agrobacterium tumefaciens. Plant Physiol 91:1212–1218

    PubMed  CAS  Google Scholar 

  • Chilton MD (2001) Agrobacterium. A memoir. Plant Physiol 125:9–14

    PubMed  CAS  Google Scholar 

  • Cho HJ, Brotherton JE, Song HS, Widholm JM (2000) Increasing tryptophan synthesis in a forage legume Astragalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol 123:1069–1076

    PubMed  CAS  Google Scholar 

  • Chopra R, Prabhakar A, Singh N, Saini R (2011) In vitro regeneration and sonication–assisted Agrobacterium tumefaciens (SAAT) mediated transformation in Indian cultivars of lentil (Lens culinaris Medik.). 5th Chandigarh Science Congress, Chandigarh, India, 10 pp

    Google Scholar 

  • Christou P, Swain WF, Yang NS, McCabe DE (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci USA 86:7500–7504

    PubMed  CAS  Google Scholar 

  • Christou P, McCabe DE, Matinell BJ, Swain WF (1990) Soybean genetic transformation-commercial production of transgenic plants. Trends Biotechnol 8:145–151

    CAS  Google Scholar 

  • Clarke JL, Daniell H, Nugent JM (2011) Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Mol Biol 76:207–209

    PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    PubMed  CAS  Google Scholar 

  • Cole KS (1968) Membranes, ions and impulses: a chapter of classical biophysics. University of California Press, Berkeley

    Google Scholar 

  • Confalonieri M, Borghetti R, Macovei A, Testoni C, Carbonera D, Salema Fevereiro MP, Rommens C, Swords K, Piano E, Balestrazzi A (2010) Backbone-free transformation of barrel medic (Medicago truncatula) with a Medicago-derived transfer DNA. Plant Cell Rep 29:1013–1021

    PubMed  CAS  Google Scholar 

  • Cook D (1999) Medicago truncatula: a model in the making! Curr Opin Plant Biol 2:301–304

    PubMed  CAS  Google Scholar 

  • Crane C, Wright E, Dixon RA, Wang ZY (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344–1354

    PubMed  CAS  Google Scholar 

  • Dan Y, Reighceri NA (1998) Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell Dev Biol Plant 34:14–21

    CAS  Google Scholar 

  • Dang W, Zhi-Ming W (2007) An optimized Agrobacterium-mediated transformation for soybean for expression of binary insect resistance genes. Plant Sci 173:381–389

    CAS  Google Scholar 

  • Davies DR, Hamilton J, Mullineaux P (1993) Transformation of peas. Plant Cell Rep 12:180–183

    CAS  Google Scholar 

  • Dayal S, Lavanya M, Devi P, Sharma KK (2003) An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp.] using leaf explants. Plant Cell Rep 21:1072–1079

    PubMed  CAS  Google Scholar 

  • De Kathen A, Jacobsen H-J (1990) Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Rep 9:276–279

    Google Scholar 

  • De Kathen A, Jacobsen H-J (1995) Cell competence for Agrobacterium-mediated DNA transfer in Pisum sativum L. Transgenic Res 4:184–195

    Google Scholar 

  • Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium mediated gene transfer. Plant Cell Rep 5:97–100

    CAS  Google Scholar 

  • Desgagnés R, Laberge S, Allard G, Khoudi H, Castonguay Y, Lapointe J, Michaud R, Vézina L-P (1995) Genetic transformation of commercial breeding lines of alfalfa (Medicago sativa). Plant Cell Tissue Organ Cult 42:129–140

    Google Scholar 

  • Dhir SK, Dhir S, Pizanis Sturtevant A, Widholm JM (1991) Regeneration of transformed shoots from electroporated soybean (Glycine max (L.) Merr.) protoplasts. Plant Cell Rep 10:97–101

    Google Scholar 

  • Di Antonio C, Selva E, Briquet M, Boutry M (1988) Transformation of Vicia faba explants with Agrobacterium tumefaciens. Arch Int Physiol Biochim 96:6

    Google Scholar 

  • Di R, Purcell V, Collins GB, Ghabrial SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750

    CAS  Google Scholar 

  • Díaz CL, Gronlund M, Schlaman HRM, Spaink HP (2005) Induction of hairy roots for symbiotic gene expression studies. In: Márquez AJ (ed) Lotus japonicus handbook. Springer, Dordrecht, pp 261–277

    Google Scholar 

  • Dickins RD, Reddy MSS, Meurer CA, Remond CT, Collins GB (2003) Recent advance in soybean transformation. In: Jaiwal PK, Singh PK (eds) Applied genetics of leguminosae biotechnology. Kluwer Academic Publishers, Great Britain, pp 3–21

    Google Scholar 

  • Dijak M, Smith DL, Wilson TJ, Brown DCW (1986) Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa. Plant Cell Rep 5:468–470

    Google Scholar 

  • Ding Y, Aldao-Humble G, Ludlow E, Drayton M, Lin Y, Nagel J, Dupal M, Zhao G, Pallaghy C, Kalla R, Emmerling M, Spangenberg G (2003) Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species. Plant Sci 165:1419–1427

    CAS  Google Scholar 

  • Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Google Scholar 

  • Dogan D, Khawar KM, Özcan S (2005) Agrobacterium mediated tumor and hairy root formation from different explants of lentils derived from young seedlings. Int J Agr Biol 7:1019–1025

    Google Scholar 

  • Droste A, Pasquali G, Bodanese-Zanettini MH (2000) Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep 18:51–59

    CAS  Google Scholar 

  • Du S, Erickson L, Bowley S (1994) Effect of plant genotype on the transformation of cultivated alfalfa (Medicago sativa) by Agrobacterium tumefaciens. Plant Cell Rep 13:330–334

    CAS  Google Scholar 

  • Duque AS, Araujo SS, Cordeiro MA, Santos DM, Fevereiro MP (2007) Use of fused gfp and gus reporters for the recovery of transformed Medicago truncatula somatic embryos without selective pressure. Plant Cell Tissue Organ Cult 90:325–330

    CAS  Google Scholar 

  • Ealing PM, Hancock KR, White DWR (1992) Expression of the pea albumin I gene in transgenic white clover and tobacco. Transgenic Res 3:344–354

    Google Scholar 

  • Eapen E (2008) Advances in development of transgenic pulse crops. Biotechnol Adv 26:162–168

    PubMed  CAS  Google Scholar 

  • Edwards ME, Choo T-S, Dickson CA, Scott C, Gidley MJ, Grant Reid JS (2004) The seeds of Lotus japonicus lines transformed with sense, antisense, and sense/antisense galactomannan galactosyltransferase constructs have structurally altered galactomannans in their endosperm cell walls. Plant Physiol 134:1153–1162

    PubMed  CAS  Google Scholar 

  • Fakhrai H, Fakhrai F, Evans PK (1989) In vitro culture and plant regeneration in Vicia faba subsp. Equina (Var. Spring Blaze). J Exp Bot 40:813–817

    Google Scholar 

  • Fan Y, Li W, Wang J, Liu J, Yang M, Xu D, Zhu X, Wang X (2011) Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds. BMC Biotechnol 11:45. doi:10.1186/1472-6750-11-45

    PubMed  CAS  Google Scholar 

  • Ferradini N, Nicolia A, Capomaccio S, Veronesi F, Rosellini D (2011a) Assessment of simple marker-free genetic transformation techniques in alfalfa. Plant Cell Rep 30:1991–2000

    PubMed  CAS  Google Scholar 

  • Ferradini L, Nicolia A, Capomaccio S, Veronesi F, Rosellini D (2011b) A point mutation in the Medicago sativa GSA gene provides a novel, efficient, selectable marker for plant genetic engineering. J Biotechnol 156:147–152

    PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Stadlman J, Rademacher T, Scheller J, Stöger E, Fischer R, Conrad U (2008) Biochemical and functional characterization of anti-HIV antibody-ELP fusion proteins from transgenic plants. Plant Biotechnol J 6:379–391

    PubMed  CAS  Google Scholar 

  • Fontana GS, Santini L, Caretto S, Frugis G, Mariotti D (1993) Genetic transformation in the grain legume Cicer arietinum L (chickpea). Plant Cell Rep 12:194–198

    CAS  Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Nat Acad Sci USA 82:5824–5828

    PubMed  CAS  Google Scholar 

  • Garcia JA, Hille J, Goldbach R (1986) Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti-plasmid-derived vector. Plant Sci 44:37–46

    CAS  Google Scholar 

  • Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus mRNA. Plant Sci 48:89–98

    CAS  Google Scholar 

  • Geetha N, Venkatachalam P, Lakshmi Sita G (1999) Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development of transgenic plants via direct organogenesis. Plant Biotechnol 16:213–218

    CAS  Google Scholar 

  • Grant JE, Cooper PA, McAra AE, Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Rep 15:254–258

    CAS  Google Scholar 

  • Grant JE, Cooper PA, Gilpin BJ, Hoglund SJ, Pither-Joyce MD, Timmerman-Vaughan GM (1998) Kanamycin is effective for selecting transformed peas. Plant Sci 139:159–164

    CAS  Google Scholar 

  • Grant JE, Thomson LMJ, Pither-Joyce MD, Dale TM, Cooper PA (2003) Influence of Agrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.). Plant Cell Rep 21:1207–1210

    PubMed  CAS  Google Scholar 

  • Gulati A, Jaiwal PK (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep 13:523–527

    CAS  Google Scholar 

  • Gulati A, Schryer P, McHughen A (2002) Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol Plant 38:316–324

    CAS  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    CAS  Google Scholar 

  • Hanafy M, Pickardt T, Kiesecker H, Jacobsen H-J (2005) Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica 142:227–236

    CAS  Google Scholar 

  • Hanafy M, Böttinger P, Jacobsen H-J, Pickardt T (2008) Agrobacterium-mediated transformation of faba bean. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. CRC Press, Boca Raton, FL, pp 287–300, eBook. ISBN 978-1-56022-3085

    Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496

    Google Scholar 

  • Hansen G, Wright SM (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    PubMed  Google Scholar 

  • Harrison MJ, Choudhary AD, Dubery I, Lamb CJ, Dixon RA (1991) Stress responses in alfalfa (Medicago sativa L.). 8. Cis-elements and trans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Plant Mol Biol 16:877–890

    PubMed  CAS  Google Scholar 

  • Hashem R (2007) Improvement of lentil (Lens culinaris Medik.) through genetic transformation. PhD Thesis, University, Hannover, Germany, 162 pp

    Google Scholar 

  • Hashimoto T, Yamada T, Tada A, Kawamata S, Tanaka Y, Spriprasertak P, Ichinose Y, Kato H, Izutsu S, Shiraishi T, Oku H, Ohtsuki Y (1992) Transient expression in electroporated pea protoplasts: elicitor responsiveness of a phenylalanine ammonia-lyase promoter. Plant Cell Rep 11:183–187

    CAS  Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6:265–270

    CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–922

    CAS  Google Scholar 

  • Hobbs SLA, Jackson JA, Mahon JD (1989) Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Rep 8:274–277

    CAS  Google Scholar 

  • Hoffman B, Trinh TH, Leung J, Kondorosi A, Kondorosi E (1997) A new Medicago truncatula line with superior in vitro regeneration, transformation and symbiotic properties isolated through cell culture selection. Mol Plant Microbe Interact 10:307–315

    Google Scholar 

  • http://www.gmo-safety.eu (2007) Novel feed: peas to combat infectious diseases

  • Hussey G, Johnson RD, Warren S (1989) Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma 148:101–105

    Google Scholar 

  • Iantcheva A, Vlahova M, Atanassov A (2005) Genetic transformation of Mtr using system for direct somatic embryogenesis promoted by TDZ. Biotechnol Biotechnol Eq 7:50–56

    Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with amylase inhibitor gene for insect resistance. J Biosci 31:339–345

    PubMed  CAS  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2:211–218

    CAS  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763

    PubMed  CAS  Google Scholar 

  • Iqbal MM, Zafar Y, Nazir F, Ali S, Iqbal J, Asif MA, Rashid O, Ali GM (2011) Overexpression of bacterial chitinase gene in Pakistani peanut cultivar GOLDEN. Afr J Biotechnol 10:5838–5844

    CAS  Google Scholar 

  • Iqbal MM, Nazir F, Ali S, Asif MA, Zafar Y, Iqbal J, Ali GM (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136

    PubMed  CAS  Google Scholar 

  • Islam MN, Islam KT (2010) Agrobacterium-mediated genetic transformation of mungbean (Vigna radiata (L.) Wilczek). Plant Tissue Cult Biotechnol 20:233–236

    Google Scholar 

  • Ismail RM, El-Domyati FM, Sadik AS, Nasr El-Din TM, Abdelsalam AZE (2001) Establishment of a transformation system in some Egyptian cultivars of Vicia faba L. Arab J Biotechnol 4:59–61

    Google Scholar 

  • Ivo NL, Nascimento CP, Vieira LS, Campos FAP, Aragao FJL (2008) Biolistic-mediated genetic transformation of cowpea (Vigna unguiculata) and stable Mendelian inheritance of transgenes. Plant Cell Rep 27:1475–1483

    PubMed  CAS  Google Scholar 

  • Jaiwal PW, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)—a recalcitrant grain legume. Plant Sci 161:239–247

    PubMed  CAS  Google Scholar 

  • Jelenic S, Mitrikeski PT, Papes D, Jelaska S (2000) Agrobacterium-mediated transformation of broad bean Vicia faba L. Food Technol Biotechnol 38:167–172

    CAS  Google Scholar 

  • Jian B, Hou W, Wu C, Liu B, Liu W, Song S, Bi Y, Han T (2009) Agrobacterium rhizogenes-mediated transformation of superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78. doi:10.1186/1471-2229-9-78

    PubMed  Google Scholar 

  • Jones AL, Johansen IE, Bean SJ, Bach I, Maule AJ (1998) Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J Gen Virol 79:3129–3137

    PubMed  CAS  Google Scholar 

  • Kamaté K, Rodriguez-Llorente ID, Scholte M, Durand P, Ratet P, Kondorosi E, Kondorosi A, Trinh TH (2000) Transformation of floral organs with GFP in Medicago truncatula. Plant Cell Rep 19:647–653

    Google Scholar 

  • Kapila J, De Rycke R, van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    CAS  Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan NA, Mukherjee P, Nayak P, Sen SK (1997) Expression of Cry1A(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of pod borer (Heliothis armigera) larvae. Transgenic Res 6:177–185

    CAS  Google Scholar 

  • Karthikeyan AS, Sarma KS, Veluthambi K (1996) Agrobacterium tumefaciens-mediated transformation of Vigna mungo (L.) Hepper. Plant Cell Rep 15:328–331

    CAS  Google Scholar 

  • Kato T, Goto Y, Ono K, Hayashi M, Murooka Y (2005) Expression of a major house dust mite allergen gene from Dermatophagoides farinae in Lotus japonicus accession Miyakojima MG-20. J Biosci Bioeng 99:165–168

    PubMed  CAS  Google Scholar 

  • Kelemu S, Chanshun J, Guixi H, Segura G (2005) Genetic transformation of the tropical forage legume Stylosanthes guianensis with a rice-chitinase gene confers resistance to Rhizoctonia foliar blight disease. Afr J Biotechnol 4:1025–1033

    CAS  Google Scholar 

  • Khalafalla MM, Hattori K (2000) Differential in vitro direct shoot regeneration responses in embryo axis and shoot tip explants of faba bean. Breed Sci 50:117–122

    Google Scholar 

  • Khatib F, Makris A, Yamaguchi-Shinozaki K, Kumar S, Sarker A, Erskine W, Baum M (2011) Expression of the DREB1A gene in lentil (Lens culinaris Medik. Subsp. Culinaris) transformed with the Agrobacterium system. Crop Pasture Sci 62:488–495

    CAS  Google Scholar 

  • Khawar KM, Ozcan S (2002) In vitro induction of crown galls by Agrobacterium tumefaciens super virulent strain A281 (pTiBo 542) in lentil (Lens culinaris Medik.). Turk J Bot 26:165–170

    Google Scholar 

  • Krejcı P, Matuskova P, Hanacek P, Reinohl V, Prochazka S (2007) The transformation of pea (Pisum sativum L.): applicable methods of Agrobacterium tumefaciens-mediated gene transfer. Acta Physiol Plant 29:157–163

    Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Bhattacharya PS (2010) Progress of tissue culture and genetic transformation research in pigeon pea [Cajanus cajan (L.) Millsp.]. Plant Cell Rep 29:1079–1095

    PubMed  CAS  Google Scholar 

  • Krishnamurthy KV, Suhasini K, Sagare AP, Meixner M, De Kathen A, Pickardt T, Schieder O (2000) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) embryo axes. Plant Cell Rep 19:235–240

    CAS  Google Scholar 

  • Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663–668

    PubMed  CAS  Google Scholar 

  • Lawrence PK, Koundal KR (2001) Agrobacterium tumefaciens-mediated transformation of pigeon pea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci 80:1428–1432

    CAS  Google Scholar 

  • Lehminger-Mertens R, Jacobsen HJ (1993) Regeneration of plants from protoplasts of pea (Pisum sativum L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 22, Plant protoplasts and genetic engineering III. Springer, Berlin, Heidelberg, pp 97–104

    Google Scholar 

  • Li H, Wylie SJ, Jones MGK (2000) Transgenic yellow lupin (Lupinus luteus). Plant Cell Rep 19:634–637

    CAS  Google Scholar 

  • Lohar DP, Bird DMcK (2003) Lotus japonicus: a new model to study root-parasitic nematodes. Plant Cell Physiol 44:1176–1184

    PubMed  CAS  Google Scholar 

  • Lohar DP, Schuller K, Buzas DM, Gresshoff PM, Stiller J (2001) Transformation of Lotus japonicus using the herbicide resistance bar gene as a selectable marker. J Exp Bot 52:1697–1702

    PubMed  CAS  Google Scholar 

  • Lombari P, Ercolano E, El Alaoui H, Chiurazzi M (2003) A new transformation-regeneration procedure in the model legume Lotus japonicus: root explants as a source of large numbers of cells susceptible to Agrobacterium-mediated transformation. Plant Cell Rep 21:771–777

    PubMed  CAS  Google Scholar 

  • Lombari P, Ercolano E, El Alaoui H, Chiurazzi M (2005) Agrobacterium-mediated in vitro transformation. In: Márquez AJ (ed) Lotus japonicus handbook. Springer, Dordrecht, pp 251–259

    Google Scholar 

  • Lü D, Cao X, Tang S, Tian X (2000) Regeneration of foreign genes co-transformed plants of Medicago sativa L. by Agrobacterium rhizogenes. Sci China C Life Sci 43:387–394

    PubMed  Google Scholar 

  • Lulsdorf MM, Rempel H, Jackson JA, Baliski DS, Hobbs SLA (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Rep 9:479–483

    CAS  Google Scholar 

  • Mahalakshmi LS, Leela T, Kumar SM, Kumar BK, Naresh B, Devi P (2006) Enhanced genetic transformation efficiency of mungbean by use of primary leaf explants. Curr Sci 91:93–99

    CAS  Google Scholar 

  • Mahmoudian M, Yocel M, Oktem HA (2002) Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration of Agrobacterium tumefaciens. Plant Mol Biol Rep 20:251–257

    Google Scholar 

  • Martirani L, Stiller J, Mirabella R, Alfano F, Lamberti A, Radutoiu SE, Iaccarino M, Gresshoff PM, Chiurazzi M (1999) T-DNA tagging of nodulation- and root-related genes in Lotus japonicus: expression patterns and potential for promoter trapping and insertional mutagenesis. Mol Plant Microbe Interact 12:275–284

    CAS  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926

    Google Scholar 

  • McClean P, Chee P, Held B, Simental J, Drong RF, Slightom J (1991) Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: transformation of cotyledonary and hypocotyl tissues. Plant Cell Tissue Organ Cult 24:131–138

    Google Scholar 

  • Mehrotra M, Sanyal I, Amla DV (2011a) High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants. Plant Cell Rep 30:1603–1616

    PubMed  CAS  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011b) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea for improved resistance to pod borer insect. Euphytica 182:87–102

    CAS  Google Scholar 

  • Melhorn V, Matsumi K, Koiwai H, Ikegami K, Okamoto M, Nambara E, Bittner F, Koshiba T (2008) Transient expression of AtNCED3 and AAO3 genes in guard cells causes stomatal closure in Vicia faba. J Plant Res 121:125–131

    PubMed  CAS  Google Scholar 

  • Metry EA, Ismail RM, Hussien GM, Nasr El-Din TM, El-Itriby HA (2007) Regeneration an microprojectile-mediated transformation in Vicia faba L. Arab J Biotechnol 10:23–26

    Google Scholar 

  • Micallef MC, Austin S, Bingham ET (1995) Improvement of transgenic alfalfa by backcrossing. In Vitro Cell Dev Biol Plant 31:187–192

    CAS  Google Scholar 

  • Mikschofsky H, Schirrmeier H, Keil GM, Lange B, Polowick P, Keller W, Broer I (2009) Pea derived vaccines demonstrate high immunogenicity and protection in rabbits against haemorrhagic disease virus. Plant Biotechnol J 7:537–549

    PubMed  CAS  Google Scholar 

  • Mishra N, Gupta PN, Khatri K, Goyal AK, Vyas SP (2008) Edible vaccines: a new approach to oral immunization. Indian J Biotechnol 7:283–294

    CAS  Google Scholar 

  • Mohan ML, Krishnamurthy KV (2003) Plant regeneration from decapitated mature embryo axis and Agrobacterium-mediated genetic transformation of pigeonpea. Biol Plant 46:519–527

    Google Scholar 

  • Molnár Z, Jenes B, Ördög VV (1999) Genetic transformation of pea (Pisum sativum L.) via particle bombardment. 3rd international symposium in the series recent advances in plant biotechnology, from cells to crops, September 4–10, Stara Lesna, Slovakia. Biologia 54(Suppl 7):50

    Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci USA 94:8393–8398

    PubMed  CAS  Google Scholar 

  • Monteiro M, Appezzato-da-Glória B, Valarini MJ, de Oliveira CA, Carneiro Vieira ML (2003) Plant regeneration from protoplasts of alfalfa (Medicago sativa) via somatic embryogenesis. Sci Agr 60:683–689

    Google Scholar 

  • Morton RL, Schroeder HE, Bateman K et al (2000) Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 7:3820–3825

    Google Scholar 

  • Muruganantham M, Ganapathi A, Amutha S, Vengadesan G, Selvaraj N (2005) Shoot regeneration from immature cotyledons in blackgram [Vigna mungo (L.) Hepper]. Indian J Biotechnol 4:551–555

    Google Scholar 

  • Muruganantham M, Amutha S, Selvaraj N, Vengadesan G, Ganapathi A (2007) Efficient Agrobacterium-mediated transformation of Vigna mungo using immature cotyledonary-node explants and phosphinothricin as the selection agent. In Vitro Cell Dev Biol Plant 43:550–557

    CAS  Google Scholar 

  • Muruganantham M, Amutha S, Ganapathi A (2010) Somatic embryo productions by liquid shake culture of embryogenic calluses in Vigna mungo (L.) Hepper. In Vitro Cell Dev Biol Plant 46:34–40

    Google Scholar 

  • Muthukumar MM, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985

    CAS  Google Scholar 

  • Nadolska-Orczyk A, Orczyk W (2000) Study of the factors influencing Agrobacterium-mediated transformation of pea (Pisum sativum L.). Mol Breed 6:185–194

    CAS  Google Scholar 

  • Nagl W, Ignacimuthu S, Becker J (1997) Genetic engineering and regeneration of Phaseolus and Vigna. State of the art and new attempts. J Plant Physiol 150:625–644

    CAS  Google Scholar 

  • Neumann E, Rosenheck K (1973) An alternate explanation for permeability changes induced by electrical impulses in vesicular membrane. J Membr Biol 14:193–196

    Google Scholar 

  • Ninkovic S, Miljus-Djukic J, Neskovic M (1995) Genetic transformation of alfalfa somatic embryos and their clonal propagation through repetitive somatic embryogenesis. Plant Cell Tissue Organ Cult 42:255–260

    CAS  Google Scholar 

  • Ninkovic S, Miljus-Djukic J, Vinterhalter B, Neskovic M (2004) Improved transformation of alfalfa somatic embryos using a superbinary vector. Acta Biol Cracov Ser Bot 46:139–143

    Google Scholar 

  • Novoplant (2007) http://www.gmo-safety.eu/

  • Oard JH, Paige DF, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol 92:334–339

    PubMed  CAS  Google Scholar 

  • Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73:581–598

    PubMed  Google Scholar 

  • Ochatt SJ, Power JB (1992) Plant regeneration from cultured protoplasts of higher plants. In: Moo-Young M, Warren GS, Fowler MW (eds) Comprehensive biotechnology 2nd supplement. Pergamon Press, New York, pp 99–127

    Google Scholar 

  • Ochatt SJ, Chand PK, Rech EL, Davey MR, Power JB (1988) Electroporation mediated improvement of plant regeneration from Colt cherry (Prunus avium x pseudocerasus) protoplasts. Plant Sci 54:165–169

    Google Scholar 

  • Ochatt SJ, Mousset-Déclas C, Rancillac M (2000) Fertile pea plants regenerate from protoplasts when calluses have not undergone endoreduplication. Plant Sci 156:177–183

    PubMed  CAS  Google Scholar 

  • Ochatt SJ, Muneaux E, Machado C, Jacas L, Pontécaille C (2001) The hyperhydricity of in vitro regenerants is linked with an abnormal DNA content in grass pea (Lathyrus sativus L.). J Plant Physiol 159:1021–1028

    Google Scholar 

  • Ochatt SJ, Delaitre C, Lionneton E, Huchette O, Patat-Ochatt EM, Kahane R (2005) One team, PCMV, and one approach, in vitro biotechnology, for one aim, the breeding of quality plants with a wide array of species. In: Ramdane Dris (ed) Crops: growth, quality and biotechnology. WFL Publisher, Helsinki, Finland, pp 1038–1067

    Google Scholar 

  • Ochatt SJ, Abirached-Darmency M, Marget P, Aubert G (2007) The Lathyrus paradox: “poor men’s diet” or a remarkable genetic resource for protein legume breeding? In: Ochatt SJ, Jain SM (eds) Breeding of neglected and under-utilised crops, spices and herbs. Science Press, Plymouth, pp 41–60

    Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    PubMed  CAS  Google Scholar 

  • Oger P, Petit A, Dessaux Y (1996) A simple technique for direct transformation and regeneration of the diploid legume species Lotus japonicus. Plant Sci 116:159–168

    CAS  Google Scholar 

  • Olhoft PM, Somers DA (2001) l-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    CAS  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    CAS  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholz DT (1995) Development, identification, and characterization of a glyphosat-tolerant syobean line. Crop Sci 35:1451–1461

    CAS  Google Scholar 

  • Padmanabhan P, Sahi SV (2009) Genetic transformation and regeneration of Sesbania drummondii using cotyledonary nodes. Plant Cell Rep 28:31–40

    PubMed  CAS  Google Scholar 

  • Pal M, Ghosh U, Chandra M, Pal A, Biswas BB (1991) Transformation and regeneration of mung bean (Vigna radiata). Indian J Biochem Biophys 28:449–455

    PubMed  CAS  Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617

    CAS  Google Scholar 

  • Pathak MR, Hamazah RY (2008) An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas. Plant Cell Tissue Organ Cult 93:65–71

    Google Scholar 

  • Patil G, Deokar A, Jain PK, Thengane RJ, Srinivasan R (2009) Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 28:1669–1676

    PubMed  CAS  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    CAS  Google Scholar 

  • Penney CA, Dr T, Dean SS, Walmsley AM (2011) Plant-made vaccines in support the Millenium Development Goals. Plant Cell Rep 30:789–798

    PubMed  CAS  Google Scholar 

  • Penza R, Lurquin PF, Filippone E (1991) Gene transfer by cocultivation of mature embryos with Agrobacterium tumefaciens: application to cowpea (Vigna unguiculata Walp). J Plant Physiol 138:39–43

    CAS  Google Scholar 

  • Pereira LF, Erickson L (1995) Stable transformation of alfalfa (Medicago sativa L.) by particle bombardment. Plant Cell Rep 14:290–293

    CAS  Google Scholar 

  • Pigeaire A, Abernethy D, Smith PM, Simpson K, Fletcher N, Chin-Yi Lu, Atkins CA, Cornish E (1997) Transformation of a grain legume (Lupinus angustifolius L.) via Agrobacterium tumefaciens-mediated gene transfer to shoot apices. Mol Breed 3:341–349

    CAS  Google Scholar 

  • Pniewski T, Kapusta J (2005) Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacities by using hypervirulent Agrobacterium tumefaciens strains. J Appl Genet 46:139–147

    PubMed  Google Scholar 

  • Pniewski T, Kapusta J, Plucienniczak A (2006) Agrobacterium-mediated transformation of yellow lupin to generate callus tissue producing HBV surface antigen in a long-term culture. J Appl Genet 47:309–318

    PubMed  Google Scholar 

  • Polowick PL, Quandt J, Mahon JD (2000) The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Sci 153:161–170

    PubMed  CAS  Google Scholar 

  • Polowick PL, Baliski DS, Mahon JD (2004) Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.): gene integration, expression and inheritance. Plant Cell Rep 23:485–491

    PubMed  CAS  Google Scholar 

  • Ponappa T, Brzozowski AE, Finer JJ (1999) Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep 19:6–12

    CAS  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312

    PubMed  CAS  Google Scholar 

  • Pujol M, Gavilondo J, Ayala M, Rodríguez M, Gonzáles EM, Pérez L (2007) Fighting cancer with plant-expressed pharmaceuticals. Trends Biotechnol 25:455–459

    PubMed  CAS  Google Scholar 

  • Puonti-Kaerlas J, Stabel P, Eriksson T (1989) Transformation of pea (Pisum sativurn L.) by Agrobacterium turnefaciens. Plant Cell Rep. 8:321–324.

    Google Scholar 

  • Puonti-Kaerlas J, Eriksson T, Engström P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium-mediated gene transfer. Theor Appl Genet 80:246–252

    Google Scholar 

  • Puonti-Kaerlas J, Ottosson A, Eriksson T (1992) Survival and growth of pea protoplasts after transformation by electroporation. Plant Cell Tissue Organ Cult 30:141–148

    Google Scholar 

  • Qiusheng Z, Bao J, Likun L, Xianhua X (2005) Effects of antioxidants on the plant regeneration and GUS expressive frequency of peanut (Arachis hypogaea) explants by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 81:83–90

    Google Scholar 

  • Quecini VM, Oliveira CAd, Alves AC, Vieira MLC (2002) Factors influencing electroporation-mediated gene transfer to Stylosanthes guianensis (Aubl.) Sw. protoplasts. Genet Mol Biol 25:73–80

    CAS  Google Scholar 

  • Ramana RV, Venu CH, Jayashree T, Sadanandam A (1996) Direct somatic embryogenesis and transformation in Cicer arietinum. Indian J Exp Biol 34:716–718

    PubMed  CAS  Google Scholar 

  • Rech EL, Ochatt SJ, Chand PK, Power JB, Davey MR (1987) Electro-enhancement of division of plant protoplast-derived cells. Protoplasma 141:169–176

    Google Scholar 

  • Rech EL, Ochatt SJ, Chand PK, Davey MR, Mulligan BJ, Power JB (1988) Electroporation increases DNA synthesis in cultured plant protoplasts. Nat Biotechnol 6:1091–1093

    CAS  Google Scholar 

  • Ribalta F, Croser J, Ochatt S (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169:104–110

    PubMed  CAS  Google Scholar 

  • Rohini VK, Rao SK (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    CAS  Google Scholar 

  • Rohini VK, Rao SK (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    PubMed  CAS  Google Scholar 

  • Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of Medicago truncatula-implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791

    CAS  Google Scholar 

  • Rosellini D, Capomaccio S, Ferradini N, Savo Sardaro ML, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044

    PubMed  CAS  Google Scholar 

  • Russell DR, Wallace KM, Bathe JH, Martineli BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep 12:165–169

    CAS  Google Scholar 

  • Saini R, Jaiwal KJ (2005) Transformation of a recalcitrant grain legume, Vigna mungo L. Hepper using Agrobacterium tumefaciens-mediated gene transfer to shoot apical meristem cultures. Plant Cell Rep 24:164–171

    PubMed  CAS  Google Scholar 

  • Saini R, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. Biol Plant 51:69–74

    CAS  Google Scholar 

  • Saini R, Jaiwal S, Jaiwal PK (2003) Stable genetic transformation of Vigna mungo L. Hepper via Agrobacterium tumefaciens. Plant Cell Rep 21:851–859

    PubMed  CAS  Google Scholar 

  • Saini SR, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    PubMed  Google Scholar 

  • Samac DA (1995) Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 43:271–277

    Google Scholar 

  • Samac DA, Tesfaye M, Dornbusch M, Saruul P, Temple SJ (2004) A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res 13:349–361

    PubMed  CAS  Google Scholar 

  • Sangwan RS, Ochatt S, Nava-Saucedo JE, Sangwan-Norreel BS (2010) T-DNA insertion mutagenesis for gene cloning in plants. In: Shu Q, Nakagawa H, Forster B (eds) Mutation techniques in plants—principles and applications. Springer, Germany, pp 1–19

    Google Scholar 

  • Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    CAS  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tissue Organ Cult 70:155–161

    CAS  Google Scholar 

  • Sanyal I, Amla DV (2008) Genetic transformation of chickpea (Cicer arietinum L.) using cotyledonary node explants. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. The Haworth Press, Taylor & Francis Group, Boca Raton, FL, pp 147–158

    Google Scholar 

  • Sarker RH, Biswas A, Mustafa BM, Mahbub S, Hoque MI (2003) Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.). Plant Tissue Cult 13:1–12

    Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea plants expressing high levels of a bean α-amylase inhibitor. Mol Breed 14:73–82

    CAS  Google Scholar 

  • Sathyanarayana R, Kumar V, Ramesh CK, Parmesha M, Khan MHM (2012) A preliminary attempt for efficient genetic transformation and regeneration of legume Mucuna pruriens L. mediated by Agrobacterium tumefaciens. Turk J Biol 36:285–292

    CAS  Google Scholar 

  • Sato S, Newell C, Kolacz K, Tredo L, Finer J, Hinchee M (1993) Stable transformation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep 12:408–413

    CAS  Google Scholar 

  • Sato H, Yamada T, Kita Y, Ishimoto M, Kitamura K (2007) Production of transgenic plants and their early seed set in Japanese soybean variety, Kariyutaka. Plant Biotechnol 5:533–536

    Google Scholar 

  • Scaramelli L, Balestrazzi A, Bonadei M, Piano E, Carbonera D, Confalonieri M (2009) Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events. Plant Cell Rep 28:197–211

    PubMed  CAS  Google Scholar 

  • Schaerer S, Pilet P-E (1991) Roots, explants and protoplasts from pea transformed with strains of Agrobacterium tumefaciens and rhizogenes. Plant Sci 78:247–258

    Google Scholar 

  • Scholte M, d’Erfurth I, Rippa R, Mondy S, Cosson V, Durand P, Breda B, Trinh H, Rodriguez-Llorente I, Kondorosi E, Schultze M, Kondorosi A, Ratet P (2002) T-DNA tagging in the model legume Medicago truncatula allows efficient gene discovery. Mol Breed 10:203–215

    CAS  Google Scholar 

  • Schroeder HE, Scholtz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101:751–757

    PubMed  CAS  Google Scholar 

  • Schroeder HE, Gollasch S, Tabe LM, Higgins TJV (1994) Recent advances in gene transfer to peas. Pisum Genet 26:1–5

    Google Scholar 

  • Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297–303

    PubMed  CAS  Google Scholar 

  • Shao C-Y, Russinova E, Iantcheva A, Atanassov A, McCormac A, Chen D-F, Elliott MC, Slater A (2000) Rapid transformation and regeneration of alfalfa (Medicago falcata L.) via direct somatic embryogenesis. Plant Growth Regul 31:155–166

    CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An effecient method for the production of transgenic plants of peanut through Agrobacterium mediated genetic transformation. Plant Sci 159:7–19

    PubMed  CAS  Google Scholar 

  • Sharma KK, Lavanya M, Anjaiah V (2006) Agrobacterium-mediated production of transgenic pigeonpea (Cajanus cajan L. Millsp.) expressing the synthetic BT CRY1AB gene. In Vitro Cell Dev Biol Plant 42:165–173

    CAS  Google Scholar 

  • Siefkes-Boer HJ, Noognan MJ, Bullock DV, Conner AJ (1995) Hairy root transformation system in large-seeded grain legumes. Israel J Plant Sci 43:1–5

    Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008a) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean a-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850

    PubMed  CAS  Google Scholar 

  • Solleti SK, Bakshi S, Sahoo L (2008b) Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotechnol 135:97–104

    PubMed  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    PubMed  CAS  Google Scholar 

  • Sonia, Saini R, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26 : 187–198.

    PubMed  CAS  Google Scholar 

  • Spano L, Mariotti D, Pezzotti M, Damiani F, Arcioni S (1987) Hairy root transformation in alfalfa (Medicago sativa L.). Theor Appl Genet 73:523–530

    CAS  Google Scholar 

  • Srinivasan MT, Sharma RP (1991) Agrobacterium mediated genetic transformation of chickpea (Cicer arietinum). Indian J Exp Biol 29:758–761

    PubMed  CAS  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau C, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cry/Ac gene. Plant Physiol 112:121–129

    PubMed  CAS  Google Scholar 

  • Stiller J, Martirani L, Tuppale S, Chian R-J, Chiurazzi M, Gresshoff PM (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365

    CAS  Google Scholar 

  • Suraninpong P (2002) Introduction and expression of cholesterol oxidase gene in a bacterium [Escherichia coli M15 (pREP4)] and mungbean [Vigna radiata (L.) Wilczek]. PhD Thesis, Suranare University of Technol, ISBN 974-533-213-5, 162 pp

    Google Scholar 

  • Suraninpong P, Chanprame S, Cho HJ, Widholm JM, Waranyuwat A (2004) Agrobacterium-mediated transformation of mungbean [Vigna radiata (L.) Wilczek]. Walailak J Sci Technol 1:38–48

    Google Scholar 

  • Surekha Ch, Arundhati A, Seshagiri Rao G (2007) Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. J Biol Sci 7:176–181

    CAS  Google Scholar 

  • Svabova L, Griga M (2008) The effect of cocultivation treatments on transformation efficiency in pea (Pisum sativum L.). Plant Cell Tissue Organ Cult 95:293–304

    CAS  Google Scholar 

  • Svabova L, Smykal P, Griga M, Ondrej V (2005) Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biol Plant 49:361–370

    CAS  Google Scholar 

  • Svabova L, Smykal P, Griga M (2008) Agrobacterium-mediated transformation of pea (Pisum sativum L.): transformant production in vitro and by non-tissue culture approach. In: Kharkwal MC (ed) Food legumes for nutritional security and sustainable agriculture. IS-GPB, New Delhi, India, pp 208–220. ISBN 978-81-908995-2-9

    Google Scholar 

  • Tanaka H, Toyama J, Hashiguchi M, Kutsuna Y, Tsuruta S, Akashi R, Hoffmann F (2008) Transgenic superroots of Lotus corniculatus can be regenerated from superroot-derived leaves following Agrobacterium-mediated transformation. J Plant Physiol 165:1313–1316

    PubMed  CAS  Google Scholar 

  • Tazeen S, Mirza B (2004) Factors affecting Agrobacterium tumefaciens mediated genetic transformation of Vigna radiata (L.) Wilczek. Pakistan J Bot 36:887–896

    Google Scholar 

  • Tesfaye M, Denton MD, Samac DA, Vance CP (2005) Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant Soil 269:233–243

    CAS  Google Scholar 

  • Tewari-Singh N, Sen J, Kiesecker H, Reddy VS, Jacobsen HJ, Guha-Mukherjee S (2004) Use of a herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea. Plant Cell Rep 22:576–583

    PubMed  CAS  Google Scholar 

  • Thangjam R, Sahoo L (2012) In vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Parkia timoriana (DC.) Merr.: a multipurpose tree legume. Acta Physiol Plant 34:1207–1215

    CAS  Google Scholar 

  • Thomas MR, Rose RJ, Nolan KE (1992) Genetic transformation of Medicago truncatula using Agrobacterium with genetically modified Ri and disarmed Ti plasmids. Plant Cell Rep 11:113–117

    CAS  Google Scholar 

  • Thomas JC, Wasmann CC, Echt C, Dunn RL, Bohnert HJ, McCoy TJ (1994) Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.). Plant Cell Rep 14:31–36

    CAS  Google Scholar 

  • Thu TT, Mai TTX, DewaeleE FS, Tadesse Y, Angenon G, Jacobs M (2003) In vitro regeneration and transformation of pigeonpea [Cajanus cajan (L.) Millsp]. Mol Breed 11:159–168

    CAS  Google Scholar 

  • Thykjaer T, Stiller J, Handberg K, Jones J, Stougaard J (1995) The maize transposable element Ac is mobile in the legume Lotus japonicus. Plant Mol Biol 27:981–993

    PubMed  CAS  Google Scholar 

  • Thykjær T, Schauser L, Danielsen D, Finneman J, Stougaard J (1998) Transgenic plants: Agrobacterium-mediated transformation of the diploid legume Lotus japonicus. In: Celis JE, Carter N, Hunter T, Shotton D, Simon K, Small JV (eds) Cell biology: a laboratory handbook, vol 3, 2nd edn. Academic, New York, pp 518–525

    Google Scholar 

  • Tirichine L, Herrera-Cervera JA, Stougaard J (2005) Transformation-regeneration procedure for Lotus japonicus. In: Márquez AJ (ed) Lotus japoni handbook. Springer, Dordrecht, pp 279–284

    Google Scholar 

  • Tiwari S, Mishra DK, Singh A, Singh PK, Tuli R (2008) Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    PubMed  CAS  Google Scholar 

  • Tiwari S, Tuli R (2012) Optimization of factors for efficient recovery of transgenic peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult 109:111–121

    CAS  Google Scholar 

  • Torisky RS, Kovacs L, Avdiushko S, Newman JD, Hunt AG, Collins GB (1997) Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5. Plant Cell Rep 17:102–108

    CAS  Google Scholar 

  • Townsend JA, Thomas LA (1996) Method of Agrobacterium-mediated transformation of cultured soybean cells. U.S. patent No. 5,563,055

    Google Scholar 

  • Trieu AT, Harrison MJ (1996) Rapid transformation of Medicago truncatula: regeneration via organogenesis. Plant Cell Rep 16:6–11

    CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou T-J, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    PubMed  CAS  Google Scholar 

  • Trinh TH, Ratet P, Kondorosi E, Durand P, Kamaté K, Bauer P, Kondorosi A (1998) Rapid and efficient transformation of diploid Medicago truncatula and Medicago sativa ssp. falcata lines improved in somatic embryogenesis. Plant Cell Rep 17:345–355

    CAS  Google Scholar 

  • Udvardi MK, Tabata S, Parniske M, Stougaard J (2005) Lotus japonicus: legume research in the fast lane. Trends Plant Sci 10:222–228

    PubMed  CAS  Google Scholar 

  • Uhde-Stone C, Liu J, Zinn KE, Allan DL, Vance CP (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44:840–853

    PubMed  CAS  Google Scholar 

  • Vaz Patto MC, Skiba B, Pang ECK, Ochatt SJ, Lambein F, Rubiales D (2006) Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. Euphytica 147:133–147

    Google Scholar 

  • Veltcheva M, Svetleva D, Sp P, Perl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)—problems and progress. Sci Hort 107:2–10

    CAS  Google Scholar 

  • Vianna GR, Albino MMC, Dias BBA, de Mesquita SL, Rech EL, Aragão FJL (2004) Fragment DNA as vector for genetic transformation of bean (Phaseolus vulgaris L.). Sci Hort 99:371–378

    CAS  Google Scholar 

  • Wang A, Hanli F, Chong S, Ozias-Akins P (1998) Transformation of peanut with a soybean vspB promoter-uidA chimeric gene. I. Optimization of a transformation system and analysis of GUS expression in primary transgenic tissues and plants. Physiol Plant 102:38–48

    CAS  Google Scholar 

  • Wang J, Wang Y, Luo D (2010) LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus. J Integr Plant Biol 52:959–970

    PubMed  CAS  Google Scholar 

  • Warkentin TD, McHugen A (1993) Regeneration from lentil cotyledonary nodes and potential of this explant for transformation by Agrobacterium tumefaciens. Lens Newsl 20:26–28

    Google Scholar 

  • Warkentin TD, McHughen A (1991) Crown gall transformation of lentil (Lens culinaris Medik.) with virulent strains of Agrobacterium tumefaciens. Plant Cell Rep 10:489–493

    Google Scholar 

  • Warkentin TD, Jordan MC, Hobbs LA (1992) Effect of promoter-leader sequences on transient reporter gene expression in particle bombarded pea (Pisum sativum L.) tissues. Plant Sci 87:171–177

    CAS  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    PubMed  CAS  Google Scholar 

  • Welham T, Domoney C (2000) Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Sci 159:289–299

    PubMed  CAS  Google Scholar 

  • White DWR, Greenwood D (1987) Transformation of the forage legume Trifolium repens L. using binary Agrobacterium vectors. Plant Mol Biol 8:461–469

    CAS  Google Scholar 

  • Xinping YI, Deyue YU (2006) Transformation of multiple soybean cultivars by infecting cotyledonary-node with Agrobacterium tumefaciens. Afr J Biotechnol 5:1989–1993

    Google Scholar 

  • Yamada T, Watanabe S, Arai M, Harada K, Kitamura K (2010) Cotyledonary node pre-wounding with a micro-brush increased frequency of Agrobacterium-mediated transformation in soybean. Plant Biotechnol 27:217–220

    CAS  Google Scholar 

  • Yang H, Narin J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    PubMed  CAS  Google Scholar 

  • Youssef SS, Moghaieb REA, Saker MM, El Awady M, El Sharkawy A (2007) Transformation of faba bean (Vicia faba l.): a non-tissue culture based approach for generating transgenic plants. In Vitro Cell Dev Biol Anim 43:S28

    Google Scholar 

  • Zeng P, Vadnais DA, Zhang Z, Polacco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merill]. Plant Cell Rep 22:478–482

    PubMed  CAS  Google Scholar 

  • Zhang ZY, Coyne DP, Mitra A (1997) Factors affecting Agrobacterium-mediated transformation of common bean. J Am Soc Hort Sci 122:300–305

    CAS  Google Scholar 

  • Zhang H, Huang Q-M, Su J (2010) Development of alfalfa (Medicago sativa L.) regeneration system and Agrobacterium-mediated genetic transformation. Agric Sci China 9:170–178

    CAS  Google Scholar 

  • Zhou X, Chandrasekharan MB, Hall TC (2004) High rooting frequency and functional analysis of GUS and GFP expression in transgenic Medicago truncatula A17. New Phytol 162:813–822

    CAS  Google Scholar 

  • Zimmerman J, Saalbach I, Jahn D, Giersberg M, Haehnel S, Wedel J, Macek J, Zoufal K, Glünder G, Falkenburg D, Kipryanov SM (2009) Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasiti infections in chickens. BMC Biotechnol 9:79

    Google Scholar 

  • Zinn KE, Liu J, Allan DL, Vance CP (2009) White lupin (Lupinus albus) response to phosphorus stress: evidence for complex regulation of LaSAP1. Plant Soil 322:1–15

    CAS  Google Scholar 

Download references

Acknowledgements

The writing up of this review was helped by financial funding to both partner laboratories by the Eurostar grant PEASTAR E!4770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Ochatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Atif, R.M. et al. (2013). Gene Transfer in Legumes. In: Lüttge, U., Beyschlag, W., Francis, D., Cushman, J. (eds) Progress in Botany. Progress in Botany, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30967-0_2

Download citation

Publish with us

Policies and ethics