Skip to main content

Review of Field Emission from Carbon Nanotubes: Highlighting Measuring Energy Spread

  • Chapter
  • First Online:
NanoCarbon 2011

Part of the book series: Carbon Nanostructures ((CARBON,volume 3))

Abstract

This paper is a review of the research on field emission properties of carbon nanotubes (CNTs), the basic properties of CNTs, the main emission properties with highlighting in energy spread and the work done in applying CNTs for field emission microscopy (FEM). In this work there are explanations about the density of states (DOS) of the conduction electrons responsible for the emission; comparison of the characteristics of CNTs emission from single nanotube or films; comparison of the different types of electron sources and the introduction of CNTs electron sources applying in retarding field analyzer (RFA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H.J.: Work functions and surface functional groups of multiwall carbon nanotubes. Phys Chem B. 103, 8116–8121 (1999)

    Article  CAS  Google Scholar 

  2. Alvarenga, J., Jarosz, P.R., Schauerman, C.M., Moses, B.T., Landi, B.J., Cress, C.D., Raffaelle, R.P.: High conductivity carbon nanotube wires from radial densification and ionic doping. Appl. Phys. Lett. 97, 182106-1–182106-3 (2010)

    Google Scholar 

  3. Amelinckx, S., Bernaerts, D., Zhang, X.B., Van Tendeloo, G., Van Landuyt J.: A structure model and growth mechanism for multishell carbon nanotubes. Science. 267, 1334‐1338 (1995)

    Google Scholar 

  4. Bonard, J.M., Maier, F., Stockli, T., Châtelain, A., De Heer, W.A., Salvetat, J.P., Forró L.: Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy. 73, 9–18 (1998)

    Google Scholar 

  5. Bonard, J.M., Salvetat, J.P., Stöckli, T., De Heer, W.A., Forró, L., Châtelain, A.: Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73, 918–920 (1998b)

    Article  CAS  Google Scholar 

  6. Bonard, J.M., Salvetat, J.P., Stockli, T., Forro, L., Chatelain, A.: Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Appl. Phys. A69, 245–254 (1999)

    Google Scholar 

  7. Bonard, J.M., Weiss, N., Kind, H., Stoeckli, T., Forro, L., Kern, K., Chatelain, A.: Tuning the field emission from carbon nanotube films. Adv. Mater. 13, 184–188 (2001b)

    Article  CAS  Google Scholar 

  8. Bonard, J.M., Kind, H., Stockli, T., Nilsson, L.O.: Field emission from carbon nanotubes: the first five years. Solid State Electron. 45, 893–914 (2001c)

    Article  CAS  Google Scholar 

  9. Bonard, J.M., Dean, K.A., Coll, F.C., Klinke, C.: Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89, 197602 (2002b)

    Article  Google Scholar 

  10. Carroll, D.L., Redlich, P., Ajayan, P.M., Charlier, J.C., Blase, X., De, A., Vita, R.: Electronic structure and localized states at carbon nanotube tips. Phys. Rev. Lett. 78, 2811–2814 (1997)

    Article  CAS  Google Scholar 

  11. Chen, J., Zhou, X., Deng, S.Z., Xu, N.S.: The application of carbon nanotubes in high-efficiency low power consumption field-emission luminescent tube. Ultramicroscopy 95, 153–156 (2003)

    Article  CAS  Google Scholar 

  12. Chernozatonskiib, L.A., Gulyaevb, Yu. V., Kosakovskajab, Z. Ja., Sinitsync, N. I., Torgashovc, G. V., Zakharchenkoc, Yu. F., Fedorovb, E. A.: Val’chukb, V. P.: Electron field emission from nanofilament carbon films. Chem. Phys. Lett. 233, 63–68 (1995)

    Google Scholar 

  13. Chhowalla, M., Ducati, C., Rupesinghe, N.L., Teo, K.B.K., Amaratunga, G.A.J.: Field emission from short and stubby vertically aligned carbon nanotubes. Appl. Phys. Lett. 79, 2079–2081 (2001)

    Article  CAS  Google Scholar 

  14. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129–3131 (1999)

    Article  CAS  Google Scholar 

  15. Cooper, E.B., Manalis, S.R., Fang, H., Dai, H., Matsumoto, K., Minne, S.C., Hunt, T., Quate, C.F.: Terabit-per-square-inch data storage with the atomic force microscope. Appl. Phys. Lett. 75, 3566–3568 (1999)

    Article  CAS  Google Scholar 

  16. Cui, Y., Zou, Y., Valfells, M., Reiser, M., Alter, M., Haber, I., Kishek, R.A., Bernal, S., O`Shea, P.G.: Design and operation of a retarding field energy analyzer with variable focusing for space-charge-dominated electron beams. Rev. Sci. Instrum. 75, 2736–2745 (2004)

    Article  CAS  Google Scholar 

  17. Cumings, A., Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602–604 (2000)

    Article  CAS  Google Scholar 

  18. Cumings, J., Zettl, A., McCartney, M.R., Spence, J.C.H.: Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002)

    Article  Google Scholar 

  19. De Heer, W.A., Chatelain, A., Ugarte, D.: A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995)

    Article  Google Scholar 

  20. De Jonge, N.: The brightness of carbon nanotube electron emitters. J. Appl. Phys. 95, 673–681 (2004)

    Article  Google Scholar 

  21. De Jonge, N., Lamy, Y., Schoots, K. and Oosterkamp, T.H.: High brightness electron beam from a multi‐walled carbon nanotube. Nature. 420, 393–395 (2002)

    Google Scholar 

  22. De Jonge, N., van Druten, N.J.: Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope. Ultramicroscopy 95, 85–91 (2003)

    Article  Google Scholar 

  23. De Jonge, N., Bonard, J.M.: Carbon nanotube electron sources and applications. Phil. Trans. R. Soc. Lond A. 362, 2239–2266 (2004)

    Article  Google Scholar 

  24. De Jonge, N., Allioux, M., Doytcheva, M., Kaiser, M., Teo, K.B.K., Lacerda, R.G., Milne, W.I.: Characterization of the field emission properties of individual thin carbon nanotubes. Appl. Phys. Lett. 85, 1607–1609 (2004)

    Article  Google Scholar 

  25. De Jonge, N., Doytcheva, M., Allioux, M., Kaiser, M., Mentick, S.A.M., Teo, K.B.K., Lacerda, R.G., Milne, W.I.: Cap closing of thin carbon nanotubes. Adv. Mater. 17, 451–455 (2005)

    Article  Google Scholar 

  26. De Pablo, P.J., Howell, S., Crittenden, S., Walsh, B., Graugnard, E., Reifenberger, R.: Correlating the location of structural defects with the electrical failure of multiwalled carbon nanotubes. Appl. Phys. Lett. 75, 3941–3943 (1999)

    Article  Google Scholar 

  27. Dean, K.A., Chalamala, B.R.: Field emission microscopy of carbon nanotube caps. J. Appl. Phys. 85, 3832–3836 (1999a)

    Article  CAS  Google Scholar 

  28. Dean, K.A., Chalamala, B.R.: The environmental stability of field emission from singlewalled carbon nanotubes. Appl. Phys. Lett. 75, 3017–3019 (1999b)

    Article  CAS  Google Scholar 

  29. Dean, K.A., von Allmen, P., Chalamala, B.R.: Three behavioral states observed in field emission from single-walled carbon nanotubes. J. Vac. Sci. Technol., B 17, 1959–1968 (1999a)

    Article  CAS  Google Scholar 

  30. Dean, K.A., Groening, O., Kuttel, O.M., Schlapbach, L.: Nanotube electronic states observed with thermal field emission electron spectroscopy. Appl. Phys. Lett. 75, 2773–2775 (1999b)

    Article  CAS  Google Scholar 

  31. Dean, K.A., Chalamala, B.R.: Current saturation mechanisms in carbon nanotube field emitters. Appl. Phys. Lett. 76, 375–377 (2000)

    Article  CAS  Google Scholar 

  32. Dean, K.A., Burgin, T.P., Chamala, B.R.: Evaporation of carbon nanotubes during electron field emission. Appl. Phys. Lett. 79, 1873–1875 (2001)

    Article  CAS  Google Scholar 

  33. Dean, K.A., Chalamala, B.R.: Experimental studies of the cap structures of single-walled carbon nanotubes. J. Vac. Sci. Technol. B 21, 868–871 (2003)

    Article  CAS  Google Scholar 

  34. den Engelsen, D., Li, X., Qi, Y.: Properties of a scanning field emission backlight. In: Proceedings of 13th International Display Workshops (IDW`06), Otsu, Japan, 6–8 Dec 2006

    Google Scholar 

  35. den Engelsen, D., Silver, J., Withnall, R., Ireland, T. G., Harris, P.G.: Does a Field Emission Backlight make Sense? In: Proceedings of the 16th International Display Workshop (IDW`09), Miyazaki, Japan, 9–11 Dec 2009

    Google Scholar 

  36. Dyke, W.P., Dolan, W.W.: Advances in electronics and electron physics. 8, 89–157 (1956)

    Google Scholar 

  37. Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.: Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512–514 (1999)

    Google Scholar 

  38. Franklin, A.D., Luisier, M., Han, S.J., Tulevski, G., Breslin, C.M., Gignac, L., Lundstrom, M.S., Haensch, W.: Sub-10 nm carbon nanotube transistor. Nano. Lett. 12, 758–762 (2012)

    Article  CAS  Google Scholar 

  39. Fransen, M.J., van Rooy, T.L., Kruit, P.: Field emission energy distributions from individual multiwalled carbon nanotubes. Appl. Surf. Sci. 146, 312–327 (1999)

    Article  CAS  Google Scholar 

  40. Gadzuk, J.W., Plummer, E.W.: Field emission energy distribution (FEED). Rev. Mod. Phys. 45, 487–548 (1973)

    Article  CAS  Google Scholar 

  41. Gomer, R.: Field emission and field ionization. Harvard University Press, Cambridge (1961)

    Google Scholar 

  42. Groening, O., Kuettel, O.M., Schaller, E., Groening, P., Schlapbach, L.: Vacuum arc discharges preceding high electron field emission from carbon films. Appl. Phys. Lett. 69, 476–478 (1996)

    Article  CAS  Google Scholar 

  43. Groening, O., Kuettel, O.M., Emmenegger, C., Groening, P., Schlapbach, L.: Field emission properties of carbon nanotubes. J. Vac. Sci. Technol. B 18, 665–678 (2000)

    Article  Google Scholar 

  44. Hainfeld, J.F.: Understanding and using field emission sources. Scan. Electron Microsc. 1, 591–604 (1977)

    Google Scholar 

  45. Harris, P.J.F.: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century. Cambridge University press, New York (1999)

    Book  Google Scholar 

  46. Hata, K., Takakura, A., Saito, Y.: Field emission microscopy of adsorption and desorption of residual gas molecules on a carbon nanotube tip. Surf. Sci. 490, 296–300 (2001)

    Article  CAS  Google Scholar 

  47. Hawkes, P.W., Kasper, E.: Applied geometrical optics. Principles of electron optics, vol. II (1996)

    Google Scholar 

  48. Huang, S., Mau, A.W.H., Turney, T.W., White, P.A., Dai, L.: Patterned growth of wellaligned carbon nanotubes: A soft-lithographic approach. J. Phys. Chem. B. 104, 2193–2196 (2000)

    Article  CAS  Google Scholar 

  49. Iijima, S.: Helical microtubulus of graphite carbon. Nature 354, 56–58 (1991)

    Article  CAS  Google Scholar 

  50. Jung, I.S., Seonghoon, L., Yoon, H.S., Sung, Y.C., Kyoung, I., Kee, S.N.: Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl. Phys. Lett. 78, 901–903 (2001)

    Article  Google Scholar 

  51. Kaempgen, M., Chan, C.K., Ma, J., Cui, Y., Gruner, G.: Printable thin film super capacitors using single-walled carbon nanotubes. Nano. Lett. 9, 1872–1876 (2009)

    Article  CAS  Google Scholar 

  52. Khazaei, M., Dean, K.A., Farajian, A.A., Kawazoe, Y.: Field emission signature of pentagons at carbon nanotube caps. J. Phys. Chem. 111, 6690–6693 (2007)

    Article  CAS  Google Scholar 

  53. King, P.J., Higgins, T.M., De, S., Nicoloso, N., Coleman, J.M.: Percolation Effects in Super capacitors with thin, transparent carbon nanotube electrodes. ACS Nano 6, 1732–1741 (2012)

    Article  CAS  Google Scholar 

  54. Kim, C., Kin, B., Lee, S.M., Jo, C., Lee, Y.H.: Eletronic structures of capped carbon nanotubes under electric fields. Phys. Rev. B. 65, 165418-1-165418-6 (2002)

    Google Scholar 

  55. Küttel, O.M., Gröning, O., Emmenegger, C., Schlapbach, L.: Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Appl. Phys. Lett. 73, 2113–2115 (1998)

    Article  Google Scholar 

  56. Kuzumaki, T., Takamure, Y., Ichinose, H., Horiike, Y.: Structural change at the carbonnanotube tip by field emission. Appl. Phys. Lett. 78, 3699–3701 (2001)

    Article  CAS  Google Scholar 

  57. Leopold, J.G., Zik, O., Cheifetz, E., Rosenblatt, D.: Carbon nanotube-based electron gun for electron microscopy. J. Vac. Sci. Technol. A 19, 1790–1795 (2001)

    Article  CAS  Google Scholar 

  58. Lovall, D., Buss, M., Graugnard, E., Andres, R.P., Reifenberger, R.: Electron emission and structural characterization of rope of single-walles carbon nanotubes. Phys. Rev. B. 61, 5683–5691 (2000)

    Article  CAS  Google Scholar 

  59. Ma, X., Wang, E., Wuzong, Z., Jefferson, D.A., Jun, C., Shaozhi, D., Ningsheng, X., Jun, Y.: Polymerized carbon nanobells and their field-emission properties. Appl. Phys. Lett. 75, 3105–3107 (1999)

    Article  CAS  Google Scholar 

  60. Mann, M., El Gomati, M., Wells, T., Milne, W.I., Teo, K.B.K.: The application of carbon nanotube electron sources to the electron microscope. Proc. Of Spie. 7037, 7037P-1-7037P-6 (2008)

    Google Scholar 

  61. Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J.M., Kern, K.: Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76, 2071–2073 (2000)

    Article  CAS  Google Scholar 

  62. Nishikawa, O., Tomitori, M., Iwawaki, F.: High resolution tunneling microscopies: from FEM to STS. Surf. Sci. 266, 204–213 (1992)

    Article  Google Scholar 

  63. Obraztsov, A.N., Volkov, A.P., Pavlovskii, I.Y., Chuvilin, A.L., Rudina, N.A., Kuznetsov, V.L.: Role of the curvature of atomic layers in electron field emission from graphitic nanostructured carbon. JETP Lett. 69, 411–417 (1999)

    Article  CAS  Google Scholar 

  64. Obraztsova, E.D., Bonard, J.M., Kuznetsov, V.L., Zaikovskii, V.I., Pimenov, S.M., Pozarov, A.S., Terekhov, S.V., Konov, V.I., Obraztsov, A.N., Volkov, A.S.: Structural measurements for single-wall carbon nanotubes by Raman scattering technique. Nanostruct. Mater. 12, 567–572 (1999)

    Article  Google Scholar 

  65. Purcell, S.T., Vincent, P., Journet, C., Binh, V.T.: Hot nanotubes: stable heating of individual multiwall carbon nanotubes to 2000 K induced by the field-emission current. Phys. Rev. Lett. 88, 105502 (2002)

    Article  CAS  Google Scholar 

  66. Rinzler, A.G., Hafner, J.H., Nikolaev, P., Lou, L., Kim, S.G., Tomanek, D., Nordlander, P., Colbert, D.T., Smalley, R.E.: Unraveling nanotubes: field emission from an atomic wire. Science 269, 1550–1553 (1995)

    Article  CAS  Google Scholar 

  67. Rosen, R., Simendinger, W., Debbault, C., Shimoda, H., Fleming, L., Stoner, B., Zhou, O.: Application of carbon nanotubes as electrodes in gas discharge tubes. Appl. Phy. Lett. 76, 1668–1670 (2000)

    Article  CAS  Google Scholar 

  68. Ryhänen, T., Uusitalo, A.M., Ikhala, O., Kärkkäinen, A.: New Technology for Flat Panel Displays. In Nanotechnologies for Future Mobile Devices. Cambridge University press, New York (2010). 221

    Google Scholar 

  69. Saito, R., Fujita, M., Dresselhaus G., Dresselhaus, M. S.: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992)

    Google Scholar 

  70. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  71. Saito, Y., Uemura, S.: Field emission from carbon nanotubes and its application to electron sources. Carbon 38, 169–182 (2000)

    Article  CAS  Google Scholar 

  72. Saito, Y., Hata, K., Murata, T.: Field emission patterns originating from pentagons at the tip of a carbon nanotube. Jpn. J. Appl. Phys. 39, L271–L272 (2000)

    Article  CAS  Google Scholar 

  73. Semet, V., Binh, V.T., Vincent, P., Guillot, D., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Legagneux, P., Pribat, D.: Field electron emission from individual carbon nanotubes of a vertically aligned array. Appl. Phys. Lett. 81, 343–345 (2002)

    Article  CAS  Google Scholar 

  74. Sinha, N., Ma, J., Yeow, J.T.W.: Carbon Nanotube-based Sensors. J. Nanosci. Nanotechnol. 6, 573–590 (2006)

    Article  CAS  Google Scholar 

  75. Spindt, C.A.: A thin film field emission cathode. J. Appl. Phys. 39, 3504–3505 (1968)

    Article  CAS  Google Scholar 

  76. Sugie, H., Tanemure, M., Filip, V., Iwata, K., Takahashi, K., Okuyama, F.: Carbon nanotubes as electron source in an X-ray tube. Appl. Phys. Lett. 78, 2578–2580 (2001)

    Article  CAS  Google Scholar 

  77. Swanson, L.W., Schwind, G.A.: A review of the ZrO/W Schottky cathode”. In Handbookof charged particle optics (ed. J. Orloff). 77–102. CRC Press, Boca Raton, (1997)

    Google Scholar 

  78. Takakura, A., Hata, K., Saito, Y., Matsuda, K., Kona, T., Oshima, C.: Energy distributions of field emitted electrons from a multi-wall carbon nanotube. Ultramicroscopy 95, 139–143 (2003)

    Article  CAS  Google Scholar 

  79. Teo, K.: Carbon nanotube electron source technology. JOM 59, 29–32 (2007)

    Article  CAS  Google Scholar 

  80. Van Veen, A.H.V., Hagen, C.W., Barth, J.E., Kruit, P.: Reduced brightness of the Zr/W Schottky electron emitter. J. Vac. Sci. Technol. B 19, 2038–2044 (2001)

    Article  Google Scholar 

  81. Wang, Z.L., Poncharal, P., de Heer, W.A.: In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80, 856–858 (2002)

    Article  CAS  Google Scholar 

  82. Wei, Y.Y., Dean, K.A., Coll, B.F., Jaskie, J.E.: Stability of carbon nanotubes under electric field studied by scanning electron microscopy. Appl. Phys. Lett. 79, 4527–4529 (2001)

    Article  CAS  Google Scholar 

  83. Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E., Dekker, C.: Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  CAS  Google Scholar 

  84. Wong, S.S., Joselevich, E., Woolley, A.T., Li, C.C., Lieber, C.M.: Covalently functionalized nanotubes as nanometresized probes in chemistry and biology. Nature 394, 52–55 (1998)

    Article  CAS  Google Scholar 

  85. Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, B.D., Hebard, A.F., Rinzler, A.G.: Transparent, conductive carbon nanotube films. Sci. 305, 1273–1276 (2004)

    Article  CAS  Google Scholar 

  86. Yaguchi, T., Sato, T., Kamino, T., Taniguchi, Y., Motomiya, K., Tohji, K., Kasuya, A.: A method for characterizing carbon nanotubes. J. Electron Microsc. 50, 321–324 (2001)

    Article  CAS  Google Scholar 

  87. Yue, G.Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J.P., Zhou, O.: Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 81, 355–357 (2002)

    Article  CAS  Google Scholar 

  88. Yamamoto, S., Watanabe, I., Sasaki, S., Yaguchi, T.: Absolute work function measurements with the retarding potential method utilizing a field emission electron source. Surf. Sci. 266, 100–106 (1992)

    Article  CAS  Google Scholar 

  89. Yu, M. F., Lourie, O., Dyer M.J., Moloni, K., Kelly, T.F., Ruo, R.S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 287, 637–640 (2000)

    Google Scholar 

  90. Xu, D., Guo, G., Gui, L., Tang, Y., Shi, Z., Jin, Z., Gu, Z., Liu, W., Li, X., Zhang, G.: Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates. Appl. Phys. Lett. 75, 481–483 (1999)

    Article  CAS  Google Scholar 

  91. Xu, N.S., Huq, S.E.: Novel cold cathode materials and applications. Mater. Sci. Eng. R 48, 47–189 (2005)

    Article  Google Scholar 

  92. Zhang, D., Ryu, K., Liu, X., Polikarpov, E., Ly, J., Tompson, M.E., Zhou, C.: Transparent, conductive, and flexible Carbon nanotube films and their application in Organic light-emitting diodes. Nano Lett. 6, 1880–1886 (2006)

    Article  CAS  Google Scholar 

  93. Zhang, T., Mubeen, S., Myung, N.V., Deshusses, M.A.: Recent progress in carbon nanotube-based gas sensors. Nanotechnology 19, 1–14 (2008)

    Google Scholar 

  94. Zhirnov, V.V., Lizzu- Rinne, C., Wojak, G.J., Sanwald, R.C., Hren, J.J.: Standardization of field emission measurements. J. Vac. Technol. B 19, 87–93 (2001)

    Article  CAS  Google Scholar 

  95. Zhao, Y., Wei, J., Vajtai, R., Ajayan, P.M., Barrera, E.V.: Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals“.Sci. Rep. 83, 1–5 (2011)

    Google Scholar 

  96. Zhou, O., Fleming, R.M., Murphy, D.W., Chen, C.H., Haddon, R.C., Ramirez, A.P., Glarum, S.H.: Defects in carbon nanostructures. Science 263, 1744 (1994)

    Article  CAS  Google Scholar 

  97. Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S.: Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 1999(75), 873–875 (1999)

    Article  Google Scholar 

  98. Zhu, W.: Vacuum Micro-Electronics. Wiley, New York (2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamanaka, M.H.M.O., Mammana, V.P., Tatsch, P.J. (2013). Review of Field Emission from Carbon Nanotubes: Highlighting Measuring Energy Spread. In: Avellaneda, C. (eds) NanoCarbon 2011. Carbon Nanostructures, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31960-0_1

Download citation

Publish with us

Policies and ethics