Skip to main content

IPAnema: A family of Cable-Driven Parallel Robots for Industrial Applications

  • Chapter
  • First Online:
Cable-Driven Parallel Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 12))

Abstract

Nowadays there are very little robot systems in operation in the field of medium to large-scale handling and assembly mostly due to lack of repetitive processes or shortcomings in programming and configuring such robots. In this paper we introduce a family of cable-driven parallel robot called IPAnema that are designed for industrial processes. We address the system architecture, key components such as winches and controller, as well as design tools. Furthermore, some experimental data from the evaluation are presented to illustrate the performance of cable robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albus, J.S., Bostelman, R.V., Dagalakis, N.G.: The nist robocrane. J. Res. Nat. Inst. Stand. Technol. 97(3), 373–385 (1992)

    Article  Google Scholar 

  2. Aref, M.M., Taghirad, H.D., Barissi, S.: Optimal design of dexterous cable driven parallel manipulators. Int. J. Robotics 1, 29–47 (2009)

    Google Scholar 

  3. Baoyan, D., Qiu, Y-Y., Fushun, Z., Zi, B.: Analysis and experiment of the feed cable-suspended structure for super antenna. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM 2008, pp. 329–334 (2008).

    Google Scholar 

  4. Bruckmann, T.: Auslegung und Betrieb redundanter paralleler Seilroboter. Universität Duisburg-Essen (2010).

    Google Scholar 

  5. Dagalakis, N.G., Albus, J.S., Wang, B.-L., Unger, J., Lee, J.D.: Stiffness study of a parallel link robot crane for shipbuilding applications. ASME J. Mech. Des. 111(3), 183–193 (1989)

    Google Scholar 

  6. Fang, S.: Design, Modeling and Motion Control of Tendon-Based Parallel Manipulators. Fortschritt-Berichte VDI, Reihe 8, Nr. 1076. VDI Verlag, Düsseldorf (2005).

    Google Scholar 

  7. Gouttefarde, M., Merlet, J.P., Daney, D.: Wrench-feasible workspace of parallel cable-driven mechanisms. In: ICRA, pp. 1492–1497. Rome, Italy (2007).

    Google Scholar 

  8. Heyden, T.: Bahnregelung eines seilgeführten Handhabungssystems mit kinematisch unbestimmter Lastführung. Fortschritt-Berichte VDI, Reihe 8, Nr. 1100. VDI Verlag, Düsseldorf (2006).

    Google Scholar 

  9. Hiller, M., Fang, S., Mielczarek, S., Varhoeven, R., Franitza, D.: Design, analysis and realization of tendon-based parallel manipulators. Mech. Mach. Theor. 40(4), 429–445 (2005)

    Article  MATH  Google Scholar 

  10. Kawamura, S., Tanaka, W.S., Pandian, S.R.: Development of an ultrahigh speed robot falcon using wire drive system. In: IEEE International Conference on Robotics and Automation, pp. 1764–1850 (1995).

    Google Scholar 

  11. Lafourcade, P., Llibre, M., Reboulet, C.: Design of a parallel wire-driven manipulator for wind tunnels. In: Gosselin, C.M. Ebert-Uphoff, I. (eds.) Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators, Quebec City and Canada (2002).

    Google Scholar 

  12. Lafourcade, P., Zheng, Y-Q., Liu, X.: Stiffness analysis of wire-driven parallel kinematic manipulators. In: Proceedings 11th World Congress on Theory of Machines and Mechanisms, IFToMM, Tianjin and China (2003).

    Google Scholar 

  13. Maeda, K., Tadokoro, S., Takamori, T., Hiller, M., Verhoeven, R.: On design of a redundant wire-driven parallel robot warp manipulator. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 895–900. Detroit and MI and USA (1999).

    Google Scholar 

  14. Maier, T.: Bahnsteuerung eines seilgeführten Handhabungssystems. Fortschritt-Berichte VDI, Reihe 8, Nr. 1047. VDI Verlag, Düsseldorf (2004).

    Google Scholar 

  15. Merlet, J.P.: Kinematics of the wire-driven parallel robot marionet using linear actuators. Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena and CA and USA, In (2008)

    Google Scholar 

  16. Miermeister, P., Pott, A., Verl, A.: Dynamic modeling and hardware-in-the-loop simulation for the parallel cable robot ipanema. In: ISR/Robotik 2010, Munich and Germany (2010).

    Google Scholar 

  17. Otis, M.J.-D., Comtois, S., Laurendeau, D., Gosselin, C.M.: Human safety algorithms for a parallel cable-driven haptic interface. Adv. Intell. Soft Comput. 83, 187–200 (2010)

    Article  Google Scholar 

  18. Otis, M.: J-D., Perreault, S., Dang, T-L. N., Lambert, P., Gouttefarde, M., Laurendeau, D., Gosselin, C.M.: Determination and management of cable interferences between two 6-dof foot platforms in a cable-driven locomotion interface. Man. Cybern. Syst. 39(3), 528–544 (2009)

    Google Scholar 

  19. Perreault, S., Cardou, P., Gosselin, C.M., Otis, M. J-D.: Geometric determination of the interference-free constant-orientation workspace of parallel cable-driven mechanisms. ASME J. Mech. Rob. 2(3) (2010).

    Google Scholar 

  20. Pott, A.: Forward kinematics and workspace determination of a wire robot for industrial applications. In: ARK, pp. 451–458, Springer, Baz-sur-Mer and France (2008).

    Google Scholar 

  21. Pott, A.: An algorithm for real-time forward kinematics of cable-driven parallel robots. In: 12th International Symposium on Advances in Robot Kinematics, Springer, Piran Portoroz and Slovenio (2010).

    Google Scholar 

  22. Pott, A., Bruckmann, T., Mikelsons, L.: Closed-form force distribution for parallel wire robots. In: Computational Kinematics, pp. 25–34, Springer, Duisburg and Germany (2009).

    Google Scholar 

  23. Pott, A., Meyer, C., Verl, A.: Large-scale assembly of solar power plants with parallel cable robots. In: Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), pp. 1–6 (2010).

    Google Scholar 

  24. Rauter, G., von Zitzewitz, J., Duschau-Wicke, A., Vallery, H., Riener, R.: A tendon-based parallel robot applied to motor learning in sports. In: Proceedings of the 2010 3rd IEEE RAS and EMBS, Tokyo and Japan (2010).

    Google Scholar 

  25. Surdilovic, D., Bernhardt, R.: String-man: a new wire robot for gait rehabilitation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2031–2036. New Orleans (2004).

    Google Scholar 

  26. Surdilovic, D., Jinyu, Z., Bernhardt, R.: String-man: Wire-robot technology for safe, flexible and human-friendly gait rehabilitation. In: IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007, pp. 446–453 (2007).

    Google Scholar 

  27. Tadokoro, S., Verhoeven, R., Hiller, M., Takamori, T.: A portable parallel manipulator for search and rescue at large-scale urban earthquakes and an identification algorithm for the installation in unstructured environments. In: Proceedings of International Conference on Intelligent Robots and Systems IROS 1999, Kyongju and South Korea (1999).

    Google Scholar 

  28. Verhoeven, R.: Analysis of the Workspace of Tendon-based Stewart Platforms. PhD thesis, University of Duisburg-Essen, Duisburg (2004).

    Google Scholar 

  29. von Zitzewitz, J., Rauter, G., Steiner, R., Brunschweiler, A., Riener, R.: A versatile wire robot concept as a haptic interface for sport simulation. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Tokyo and Japan (2009).

    Google Scholar 

  30. von Zitzewitz, J., Rauter, G., Vallery, H., Morger, A., Riener, R.: Forward kinematics of redundantly actuated, tendon-based robots. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2010).

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Fraunhofer-Gesellschaft Internal Programs under Grant No. WISA 823 244. Furthermore, the research leading to these results received founding for the European Community’s Seventh Framework Program under grant agreement number NMP2-SL-2011-285404-CableBot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Pott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pott, A., Mütherich, H., Kraus, W., Schmidt, V., Miermeister, P., Verl, A. (2013). IPAnema: A family of Cable-Driven Parallel Robots for Industrial Applications. In: Bruckmann, T., Pott, A. (eds) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31988-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31988-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31987-7

  • Online ISBN: 978-3-642-31988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics