Skip to main content

Morpho-Anatomical Traits for Plant Adaptation to Drought

  • Chapter
  • First Online:
Plant Responses to Drought Stress

Abstract

Plant resistance to drought relies on adaptive strategies based on the timing of phenophases and on the presence of structural traits mainly related to: (1) increase of water uptake and storage; (2) reduction of water loss during dry periods; and (3) mechanical reinforcement of tissues to prevent wilting that may lead to irreversible collapse and damage of cells. In this chapter, after a few evolutionary considerations, we focus on the adaptive value of the main phenological, morphological and anatomical properties. We report the common existence of such traits in both desert and semiarid environments, especially in Mediterranean-type ecosystems. All morpho-anatomical characteristics are interpreted considering that plant resistance to drought also depends on the ability to respond to multiple stressors. We conclude that various combinations of anatomical features can contribute in different degrees to the adaptive capacity of plants to drought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arena C, Vitale L, De Santo Virzo A (2008) Paraheliotropism in Robinia pseudoacacia L.: an efficient strategy to optimise photosynthetic performance under natural environmental conditions. Plant Biol 10:194–201

    Article  PubMed  CAS  Google Scholar 

  • Aronne G, De Micco V (2001) Seasonal dimorphism in the Mediterranean Cistus incanus L. subsp. incanus. Ann Bot-London 87(6):789–794

    Google Scholar 

  • Aronne G, De Micco V (2004) Hypocotyl features of Myrtus communis L. (Myrtaceae): a manysided strategy for possible enhancement of seedling establishment in the Mediterranean environment. Bot J Linn Soc 145:195–202

    Article  Google Scholar 

  • Aronne G, Wilcock CC (1994) Reproductive characteristics and breeding system of shrubs of the Mediterranean region. Funct Ecol 8:69–76

    Article  Google Scholar 

  • Aronne G, Wilcock CC (1997) Reproductive phenology in Mediterranean macchia vegetation. Lagascalia 19(1–2):445–454

    Google Scholar 

  • Aronson J, Kigel J, Shmida A, Klein J (1992) Adaptive phenology of desert and Mediterranean populations of annual plants grown with and without water stress. Oecologia 89:17–26

    Article  Google Scholar 

  • Atjay GL, Ketner P, Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle, SCOPE Report 13. Wiley, UK, pp 129–181

    Google Scholar 

  • Baas P (1986) Ecological patterns in xylem anatomy. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 327–352

    Google Scholar 

  • Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull n s 8(3):245–274

    Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull n s 4(2–3):141–159

    Google Scholar 

  • Baas P, Ewers FW, Davis SD, Wheeler EA (2004) Evolution of xylem physiology. In: Hemsley A, Poole I (eds) The evolution of plant physiology. Elsevier Scientific Publishing Company, Amsterdam, pp 273–295

    Chapter  Google Scholar 

  • Bailey IW, Tupper WW (1918) Size variation in tracheary cells. I. A comparison between the secondary xylem of vascular cryptogams, gymnosperms and angiosperms. In: Proceedings of the American Academy of Arts and Sciences 54:149–204

    Google Scholar 

  • Bargel H, Barthlott W, Koch K, Schreiber L, Neinhuis C (2004) Plant cuticles: multifunctional interfaces between plant and environment. In: Hemsley A, Poole I (eds) The evolution of plant physiology. Elsevier Scientific Publishing Company, Amsterdam, pp 273–295

    Google Scholar 

  • Bateman RM, Crane PR, Di Michele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants. Annu Rev Ecol Syst 29:263–292

    Article  Google Scholar 

  • Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188(4):1099–1112

    Article  PubMed  CAS  Google Scholar 

  • Blum A (1996) Crop responses to drought and the interpretation of adaptation. Plant Growth Regul 20:135–148

    Article  CAS  Google Scholar 

  • Bongers JM (1973) Epidermal leaf characters of the winteraceae. Blumea 21:381–411

    Google Scholar 

  • Brodribb TJ (2009) Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity. Plant Sci 177:245–251

    Article  CAS  Google Scholar 

  • Brodribb TJ, Field TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from new Caledonian and Tasmanian rainforests. Plant Cell Environ 23:1381–1388

    Article  Google Scholar 

  • Brodribb TJ, Field TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Carlquist S (1975) Ecological strategies of xylem evolution. University of California Press, Berkeley

    Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer, Berlin

    Google Scholar 

  • Carlquist S (1989) Adaptive wood anatomy of chaparral shrubs. In: Keely JE (ed) The California chaparral: paradigms re-examined. Los Angeles Country Museum of Natural History Contributions, Los Angeles, pp 25–35

    Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  Google Scholar 

  • Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL (2003) Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol Rev 78:119–148

    Article  PubMed  Google Scholar 

  • Christman MA, Sperry JS (2010) Single-vessel flow measurements indicate scalariform perforation plates confer higher flow resistance than previously estimated. Plant Cell Environ 33:431–443

    Article  PubMed  Google Scholar 

  • Davis SD (1989) Patterns in mixed chaparral stands: differential water status and seedling survival during summer drought. In: Keeley SC (ed) The California chaparral: paradigms re-examined. Natural History Museum of Los Angeles County, Los Angeles, pp 97–105

    Google Scholar 

  • De Micco V, Aronne G (2007) Anatomical features, monomer lignin composition and accumulation of phenolics in one-year-old branches of the Mediterranean Cistus ladanifer L. Bot J Linn Soc 155:361–371

    Article  Google Scholar 

  • De Micco V, Aronne G (2008) Twig morphology and anatomy of Mediterranean trees and shrubs related to water availability. Bot Helv 118:139–148

    Article  Google Scholar 

  • De Micco V, Aronne G (2009) Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp incanus Trees-Struct Funct 23(5):981–989

    Article  Google Scholar 

  • De Micco V, Aronne G (2010) Root structure of Rumex scutatus L. growing on slopes. IAWA J 31(1):13–28

    Google Scholar 

  • De Micco V, Aronne G (2011). Anatomy and lignin characterization of twigs in the chaparral shrub Rhamnus californica. IAWA J in press

    Google Scholar 

  • De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007) Variations of wood anatomy and δ13C within tree rings of coastal Pinus pinaster Ait. showing intra-annual density fluctuations. IAWA J 28(1):61–74

    Google Scholar 

  • De Micco V, Aronne G, Baas P (2008) Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees-Struct Funct 22:643–655

    Article  Google Scholar 

  • De Micco V, Battipaglia G, Brand WA, Linke P, Saurer M, Aronne G, Cherubini P (2012) Discrete versus continuous analysis of anatomical and δ13C variability in tree rings with intra-annual density fluctuations. Trees-Struct Funct 26:513–524

    Article  Google Scholar 

  • di Castri F, Goodall DW, Specht RL (eds) (1981) Ecosystems of the World 11, Mediterranean-Type Shrublands. Elsevier Scientific Publishing Company, Amsterdam, pp 309–315

    Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Fahn A (1964) Some anatomical adaptations in desert plants. Phytomorphology 14:93–102

    Google Scholar 

  • Field TS, Zwieniecki MA, Donoghue MJ, Holbrook NM (1998) Stomatal plugs of Drimys winteri (Winteraceae) protect leaves from mist but not drought. Proc Natl Acad Sci USA 95:14256–14259

    Article  Google Scholar 

  • Fenner M, Kitajima K (1999) Seed and seedling ecology. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel-Dekker, New York, pp 589–621

    Google Scholar 

  • Franks SJ, Sim S, Weis EA (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282

    Article  PubMed  CAS  Google Scholar 

  • García-Fayos P, Verdú M (1998) Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecol 19:357–366

    Article  Google Scholar 

  • Graham LE (1993) The origin of land plants. Wiley, New York

    Google Scholar 

  • Grene R, Vasquez-Robinet C, Bohnert HJ (2011) Molecular biology and physiological genomics of dehydration stress. In: Lüttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Heidelberg, pp 255–288

    Chapter  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol 4(2):97–115

    Article  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52:2254–2264

    Article  Google Scholar 

  • Hulme M, Barrow EM, Arnell NW, Harrison PA, Johns TC, Downing TE (1999) Relative impacts of human-induced climate change and natural climate variability. Nature 397:688–691

    Article  CAS  Google Scholar 

  • Hunt ER, Zakir NJD, Nobel PS (1987) Water costs and water revenues for established and rain-induced roots of Agave deserti. Funct Ecol 1:125–130

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jansen S, Choat B, Pletsers A (2009) Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. Am J Bot 96:409–419

    Article  PubMed  Google Scholar 

  • Kohonen MM, Helland A (2009) On the function of wall sculpturing in xylem conduits. J Bionic Eng 6:324–329

    Article  Google Scholar 

  • Koster J, Baas P (1981) Alveolar cuticular material in Myristicaceae. In: Cutler D (ed) The Plant Cuticle. Academic, London, pp 131–138

    Google Scholar 

  • Kubiske ME, Abrams MD, Mostoller SA (1996) Stomatal and nonstomatal limitations of photosynthesis in relation to the drought and shade tolerance of tree species in open and understory environments. Trees-Struct Funct 11:76–82

    Article  Google Scholar 

  • Kummerow J (1981) Structure of roots and root systems. In: di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the World 11, Mediterranean-type shrublands. Elsevier Scientific Publishing Company, Amsterdam, pp 269–288

    Google Scholar 

  • Kummerow J. (1989) Structural aspects of shrubs in Mediterranean-type plant communities. Options Méditerranéennes—Série Séminaires 3: 5–11

    Google Scholar 

  • Lamont BB (1983) Strategies for maximizing nutrient uptake in two Mediterranean ecosystems of low nutrient status. In: Kruger FJ, Mitchell DT, Jarvis JUM (eds) Mediterranean-type ecosystems: the role of nutrients. Springer, Berlin, pp 246–273

    Chapter  Google Scholar 

  • Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011) Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:709–723

    Article  PubMed  Google Scholar 

  • Levitt J (1980) Response of plants to environmental stresses. Chilling, freezing, and high temperature stresses. Academic, New York

    Google Scholar 

  • Lewis MC (1972) The physiological significance of variation in leaf structure. Sci Progr Oxford 60:25–51

    Google Scholar 

  • Ludlow MM (1989) Strategies of response to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses: water shortage. SPB Academic Publishing, The Hague, pp 269–281

    Google Scholar 

  • Matosevic I, Costa G, Giovannetti M (1997) The mycorrhizal status of the woody Mediterranean shrub Myrtus communis L. Mycorrhiza 7(1):51–53

    Article  Google Scholar 

  • Maximov NA (1931) The physiological significance of the xeromorphic structure of plants. J Ecol 19:272–282

    Google Scholar 

  • Mitrakos K (1980) A theory for Mediterranean plant life. Oecolog Plantar 15:245–252

    Google Scholar 

  • Miyazawa SI, Yoshimura S, Shinzaki Y, Maeshima M, Miyake C (2008) Deactivation of aquaporins decreases internal conductance to CO2 diffusion in tobacco leaves grown under long-term drought. Funct Plant Biol 35:556–564

    Article  Google Scholar 

  • Moles T, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

    Article  Google Scholar 

  • Monneveux P, Belhassen E (1996) The diversity of drought adaptation in the wide. Plant Growth Regul 20:85–92

    Article  CAS  Google Scholar 

  • Moony HA, Dunn EL (1970) Photosynthetic systems of Mediterranean-climate shrubs and trees of California and Chile. Am Nat 104:447–453

    Article  Google Scholar 

  • Morison JIL, Morecroft MD (2006) Plant growth and climate change. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Mostajeran A, Rahimi-Eichi V (2008) Drought stress effects on root anatomical characteristics of rice cultivars (Oryza sativa L.). Pakistan J Biol Sci 11:2173–2183

    Article  CAS  Google Scholar 

  • Niinemets U (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Article  Google Scholar 

  • Niklas KJ (1986) Evolution of plant shape. Design constraints. Trends Ecol Evol 1(3):67–72

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • North GB, Nobel PS (1992) Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120:9–19

    Article  Google Scholar 

  • North GB, Nobel PS (1995) Hydraulic conductivity of concentric root tissues of Agave deserti Engelm. Under wet and drying conditions. New Phytol 130:47–57

    Article  Google Scholar 

  • North GB, Nobel PS (1996) Radial hydraulic conductivity of individual root tissues of Opuntia ficus-indica (L.) Miller as soil moisture varies. Ann Bot 77:133–142

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Orshan G (1964) Seasonal dimorphism of desert and Mediterranean chamaephytes and its significance as a factor in their water economy. In: Rutter AJ, Whitehead FH (eds) The water relations of plants. Blackwell, Edinburgh, pp 206–222

    Google Scholar 

  • Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495

    Article  Google Scholar 

  • Padilla FM, Miranda JD, Pugnaire FI (2007) Early root growth plasticity in seedlings of three Mediterranean woody species. Plant Soil 296:103–113

    Article  CAS  Google Scholar 

  • Patón D, Azocar P, Tovar J (1998) Growth and productivity in forage biomass in relation to the age assessed by dendrochronology in the evergreen shrub Cistus ladanifer (L.) using different regression models. J Arid Environ 38:221–235

    Article  Google Scholar 

  • Peña-Valdivia CB, Sánchez-Urdaneta AB, Meza Rangel J, Juárez Muñoz J, García-Nava R, Celis Velázquez R (2010) Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L.). Biol Res 43:417–427

    PubMed  Google Scholar 

  • Phillips WS (1963) Depth of roots in soil. Ecology 44:424

    Article  Google Scholar 

  • Pugnaire FI, Luque MT, Armas C, Gutierrez L (2006) Colonization processes in semi-arid Mediterranean old-fields. J Arid Environ 65:591–603

    Article  Google Scholar 

  • Raven JA (1977) The evolution of vascular land plants in relation to supracellular transport processes. Adv Bot Res 5:153–219

    Article  CAS  Google Scholar 

  • Reader RJ, Jalili A, Grime JP, Spencer RE, Matthews NN (1993) A comparative-study of plasticity in seedling rooting depth in drying soil. J Ecol 81:543–550

    Article  Google Scholar 

  • Ren H, Long Y, Nan L (2008) Nurse plant theory and its application in ecological restoration in lower-subtropics of China. Prog Nat Sci 18(2):137–142

    Article  Google Scholar 

  • Rhizopoulou S, Mitrakos K (1990) Water relations of evergreen sclerophylls. Seasonal changes in water relations of eleven species from the same environment. Ann Bot-London 65:171–178

    Google Scholar 

  • Riederer M, Schreiber L (2001) Effects of environmental factors on the water permeability of plant cuticles. J Exp Bot 52:2023–2033

    Article  PubMed  CAS  Google Scholar 

  • Robards AWV, Clarkson DT, Sanderson J (1979) Structure and permeability of the epidermal/hypodermal layers of the sand sedge (Carex arenzaria L.). Protoplasma 101:331–347

    Article  CAS  Google Scholar 

  • Rozema J, Staaij J, Bjiorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12(1):22–28

    Article  PubMed  CAS  Google Scholar 

  • Rundel PW (1991) Shrub life forms. In: Chu E, Mooney HA, Winner WE, Pell EJ (eds) Responses of plants to multiple stresses. Academic, New York, pp 345–370

    Google Scholar 

  • Salleo S, Nardini A (2000) Sclerophylly: evolutionary advantage or mere epiphenomenon? Plant Biosyst 134:247–259

    Article  Google Scholar 

  • Sánchez-Gómez D, Zavala MA, Valladares F (2006) Survival responses to irradiance are differentially influenced by drought in seedlings of forest tree species of the temperate-Mediterranean transition zone. Acta Oecol 30:322–332

    Article  Google Scholar 

  • Schönherr J, Ziegler H (1980) Water permeability of Betula periderm. Planta 147:345–354

    Article  Google Scholar 

  • Schulman E (1938) Classification of false annual rings in Monterey pine. Tree-ring Bull 4:4–7

    Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Schupp EW (1995) Seed seedling conflicts, habitat choice, and patterns of plant recruitment. Am J Bot 82:399–409

    Article  Google Scholar 

  • Schwartz MD (1999) Advancing to full bloom: planning phenological research for the twenty first century. Int J Biometeorol 42:113–118

    Article  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biologies 33:215–225

    Article  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomic. J Exp Bot 55:2343–2351

    Article  PubMed  CAS  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Article  Google Scholar 

  • Smith TM, Shugart HH, Woodward FI (eds) (1997) Plant functional types. Cambridge University Press, Cambridge

    Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meterology 104(1):13–23

    Article  Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  PubMed  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51:1531–1542

    Article  PubMed  CAS  Google Scholar 

  • Striker GGP, Insausti P, Grimoldi AA, Vega AS (2007) Trade-off between root porosity and mechanical strength in species with different types of aerenchyma. Plant, Cell Environ 30:580–589

    Article  CAS  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    Article  CAS  Google Scholar 

  • Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Díez P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populul tremula: how structure constrains function. Plant Cell Environ 35:839–856

    Article  PubMed  CAS  Google Scholar 

  • Traveset A, Riera N, Mas RE (2001) Ecology of fruit-colour polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. Funct Ecol 89:749–760

    Google Scholar 

  • Trubat R, Cortina J, Vilagrosa A (2006) Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.) Trees-Struct Funct 20:334–339

    Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Phys 40:19–38

    Article  Google Scholar 

  • Tyree MT, Davis SD, Cochard H (1994) Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA J 15(4):335–360

    Google Scholar 

  • Van den Oever L, Baas P, Zandee M (1981) Comparative wood anatomy of symplocos and latitude and altitude of provenance. IAWA Bull n s 2:3–24

    Google Scholar 

  • Wheeler EA, Baas P (1991) A survey of the fossil record for dicotyledonous wood and its significance for evolutionary and ecological wood anatomy. IAWA J 12:275–332

    Google Scholar 

  • Wheeler JK, Sperry JS, Hacke UG, HOANG N (2005) Intervessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ 28:800–812

    Article  Google Scholar 

  • Wilson BF (1995) Shrub stems: form and function. In: Gartner BL (ed) Plant stems: physiology and functional morphology. Academic, San Diego, pp 91–102

    Google Scholar 

  • Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325

    Article  PubMed  CAS  Google Scholar 

  • Young JA, Martens E (1991) Importance of hypocotyl hairs in germination of Artemisia seeds. J. Range Manage 44:438–442

    Article  Google Scholar 

  • Zhu J, Brown KM, Lynch JP (2010) Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant Cell Environ 33:740–749

    PubMed  Google Scholar 

  • Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica De Micco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Micco, V., Aronne, G. (2012). Morpho-Anatomical Traits for Plant Adaptation to Drought. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_2

Download citation

Publish with us

Policies and ethics