Skip to main content

Materialized Views for Count Aggregates of Spatial Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7503))

Abstract

We address the problem of efficient processing of count aggregate queries for spatial objects in OLAP systems. One of the main issues affecting the efficient spatial analysis is the, so called, distinct counting problem. The core of the problem is due to the fact that spatial objects such as lakes, rivers, etc... – and their representations – have extents. We investigate the trade-offs that arise when (semi) materialized views of the count aggregate are maintained in a hierarchical index and propose two data structures that are based on the Quadtree indexes: Fully Materialize Views (FMV) and Partially Materialized Views (PMV). Each aims at achieving a balance between the: (1) benefits in terms of response time for range queries; (2) overheads in terms of extra space and update costs. Our experiments on real datasets (Minnesota lakes) demonstrate that the proposed approaches are beneficial for the first aspect achieving up to five times speed-up, while incurring relatively minor overheads with respect to the second one, when compared to the naïve approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beigel, R., Tanin, E.: The Geometry of Browsing. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 331–340. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Braz, F., Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C.: Approximate aggregations in trajectory data warehouses. In: ICDE Workshops, pp. 536–545 (2007)

    Google Scholar 

  3. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv. 30(2), 170–231 (1998)

    Article  Google Scholar 

  4. Gargantini, I.: An effective way to represent quadtrees. Commun. ACM 25(12), 905–910 (1982)

    Article  MATH  Google Scholar 

  5. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)

    Article  Google Scholar 

  6. Hjaltason, G.R., Samet, H.: Speeding up construction of PMR quadtree-based spatial indexes. VLDB J. 11(2), 109–137 (2002)

    Article  Google Scholar 

  7. ANSI/ISO international standard. Database language SQL (1999), http://webstore.ansi.org

  8. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data Warehousing. Morgan & Claypool (2012)

    Google Scholar 

  9. Khatri, V., Ram, S., Snodgrass, R.T., O’Brien, G.M.: Supporting user-defined granularities in a spatiotemporal conceptual model. Ann. Math. Artif. Intell 36(1-2), 195–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klug, A.C.: Equivalence of relational algebra and relational calculus query languages having aggregate functions. J. ACM 29(3), 699–717 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. López, I.F.V., Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: a survey. IEEE Trans. Knowl. Data Eng. 17(2), 271–286 (2005)

    Article  Google Scholar 

  12. Malinowski, E., Zimányi, E.: Advanced Data Warehouse Design From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). Springer (2008)

    Google Scholar 

  13. Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C.: Spatio-temporal Aggregations in Trajectory Data Warehouses. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2007. LNCS, vol. 4654, pp. 66–77. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP Operations in Spatial Data Warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Pedersen, T.B., Tryfona, N.: Pre-aggregation in Spatial Data Warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 460–480. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann (2006)

    Google Scholar 

  17. Shekhar, S., Chawla, S.: Spatial Databases: A Tour. Prentice Hall (2003)

    Google Scholar 

  18. Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-temporal aggregation using sketches. In: ICDE, pp. 214–225 (2004)

    Google Scholar 

  19. Tao, Y., Papadias, D., Zhang, J.: Aggregate Processing of Planar Points. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 682–700. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Vaisman, A., Zimányi, E.: What Is Spatio-Temporal Data Warehousing? In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 9–23. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Xie, H., Tanin, E., Kulik, L.: Distributed histograms for processing aggregate data from moving objects. In: MDM, pp. 152–157 (2007)

    Google Scholar 

  22. Zhang, D., Tsotras, V.J., Gunopulos, D.: Efficient aggregation over objects with extent. In: PODS, pp. 121–132 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yaagoub, A., Liu, X., Trajcevski, G., Tanin, E., Scheuermann, P. (2012). Materialized Views for Count Aggregates of Spatial Data. In: Morzy, T., Härder, T., Wrembel, R. (eds) Advances in Databases and Information Systems. ADBIS 2012. Lecture Notes in Computer Science, vol 7503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33074-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33074-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33073-5

  • Online ISBN: 978-3-642-33074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics