Skip to main content

Concept of a Biologically Inspired Robust Behaviour Control System

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7507))

Included in the following conference series:

Abstract

In safety-critical and in space applications, high demands are made on the reliability of the involved systems. As autonomy could increase both the efficiency and the reliability of such systems, a reliable autonomous system could be beneficial for several robotic scenarios.

In this paper, the concept of a biologically inspired, robust behaviour control system is presented. The system includes components for prediction of actions to be executed and the evaluation of the action consequences. In its design process, particularly the occurence of unexpected situations was taken into account. The paper concludes with a presentation of preliminary simulation results and the evaluation setup that will be used in future tests to demonstrate the model properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holst, E., Mittelstaedt, H.: Das Reafferenzprinzip. Naturwissenschaften 37, 464–476 (1950), doi:10.1007/BF00622503

    Article  Google Scholar 

  2. Sperry, R.W.: Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology 43, 482–489 (1950)

    Article  Google Scholar 

  3. Miall, R., Wolpert, D.: Forward models for physiological motor control. Neural Networks 9(8), 1265–1279 (1996); Four Major Hypotheses in Neuroscience

    Article  MATH  Google Scholar 

  4. Schenck, W., Hoffmann, H., Möller, R.: Grasping of Extrafoveal Targets: A Robotic Model. New Ideas in Psychology 29(3), 235–259 (2011)

    Article  Google Scholar 

  5. Dyer, F.: The stroop phenomenon and its use in the study of perceptual, cognitive, and response processes. Memory & Cognition 1, 106–120 (1973)

    Article  Google Scholar 

  6. Richard Simon, J., Wolf, J.D.: Choice reaction time as a function of angular stimulus-response correspondence and age. Ergonomics 6(1), 99–105 (1963)

    Article  Google Scholar 

  7. Pashler, H.: Dual-task interference in simple tasks: Data and theory. Psychological Bulletin 116, 220–244 (1994)

    Article  Google Scholar 

  8. Norman, D.A., Shallice, T.: Attention to action: Willed and automatic control of behaviour. In: Davidson, R.J., Schwartz, G.E., Shapiro, D. (eds.) Consciousness and Selfregulation, vol. 4, pp. 1–18. Plenum Press (1986)

    Google Scholar 

  9. Schneider, W., Shiffrin, R.M.: Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review 84, 1–66 (1977)

    Article  Google Scholar 

  10. Gurney, K., Hussain, A., Chambers, J., Abdullah, R.: Controlled and Automatic Processing in Animals and Machines with Application to Autonomous Vehicle Control. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part I. LNCS, vol. 5768, pp. 198–207. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Garforth, J., McHale, S., Meehan, A.: Executive attention, task selection and attention-based learning in a neurally controlled simulated robot. Neurocomputing 69(16-18), 1923–1945 (2006)

    Article  Google Scholar 

  12. Beckers, G., Zeki, S.: The consequences of inactivating areas v1 and v5 on visual motion perception. Brain 118(1), 49–60 (1995)

    Article  Google Scholar 

  13. Markowitsch, H.J.: Psychogenic amnesia. NeuroImage 20(suppl.1), S132–S138 (2003); Convergence and Divergence of Lesion Studies and Functional Imaging of Cognition

    Google Scholar 

  14. Tulving, E.: Episodic and semantic memory. In: Tulving, E., Donaldson, W. (eds.) Organization of Memory, pp. 381–402. Academic Press (1972)

    Google Scholar 

  15. Baddeley, A.: Working memory. Oxford psychology series. Clarendon Press (1986)

    Google Scholar 

  16. Baddeley, A.: The episodic buffer: a new component of working memory? Trends in Cognitive Sciences 4(11), 417–423 (2000)

    Article  Google Scholar 

  17. Wheeler, M.A., Stuss, D.T., Tulving, E.: Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Psychological Bulletin 121, 331–354 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köhler, T., Rauch, C., Schröer, M., Berghöfer, E., Kirchner, F. (2012). Concept of a Biologically Inspired Robust Behaviour Control System. In: Su, CY., Rakheja, S., Liu, H. (eds) Intelligent Robotics and Applications. ICIRA 2012. Lecture Notes in Computer Science(), vol 7507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33515-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33515-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33514-3

  • Online ISBN: 978-3-642-33515-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics