Skip to main content

FETI Methods for the Simulation of Biological Tissues

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

Summary

In this paper we describe the application of finite element tearing and interconnecting methods for the simulation of biological tissues, as a particular application we consider the myocardium. As most other tissues, this material is characterized by anisotropic and nonlinear behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. G. Ciarlet. Mathematical elasticity. Vol. I, volume 20 of Studies in Mathematics and its Applications. North-Holland, Amsterdam, 1988.

    Google Scholar 

  2. H. Demiray. A note on the elasticity of soft biological tissues. J. Biomech., 5:309–311, 1972.

    Article  Google Scholar 

  3. C. Farhat, J. Mandel, and F.-X. Roux. Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg., 115:365–385, 1994.

    Article  MathSciNet  Google Scholar 

  4. C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Internat. J. Numer. Methods Engrg., 32:1205–1227, 1991.

    Article  MATH  Google Scholar 

  5. G. A. Holzapfel. Structural and numerical models for the (visco)elastic response of arterial walls with residual stresses. In G. A. Holzapfel and R. W. Ogden, editors, Biomechanics of Soft Tissue in Cardiovascular Systems. Springer, Wien, New York, 2003.

    Google Scholar 

  6. G. A. Holzapfel, T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comperative study of material models. J. Elasticity, 61:1–48, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. A. Holzapfel and R. W. Ogden. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. Math. Phys. Eng. Sci., 367:3445–3475, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Klawonn and O. Rheinbach. Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM Z. Angew. Math. Mech., 90:5–32, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  9. U. Langer and O. Steinbach. Boundary element tearing and interconnecting methods. Computing, 71:205–228, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Of and O. Steinbach. The all–floating boundary element tearing and interconnecting method. J. Numer. Math., 7:277–298, 2009.

    MathSciNet  Google Scholar 

  11. T. S. E. Eriksson A. J. Prassl, G. Plank, and G. A. Holzapfel. Modelling the electromechanically coupled orthotropic structure of myocardium. Submitted.

    Google Scholar 

  12. O. Schenk, M. Bollhöfer, and R. A. Römer. On large scale diagonalization techniques for the Anderson model of localization. SIAM Review, 50(1):91–112, 2008. SIGEST Paper.

    Google Scholar 

  13. O. Schenk, A. Wächter, and M. Hagemann. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput. Optim. Appl., 36(2–3):321–341, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Toselli and O. B. Widlund. Domain Decomposition Methods – Algorithms and Theory. Springer, Berlin, Heidelberg, 2005.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) and by the TU Graz within the SFB Mathematical Optimization and Applications in Biomedical Sciences. The authors would like to thank G. A. Holzapfel, G. Of, G. Plank, and C. Pechstein for the fruitful cooperation and many helpful discussions. We also thank the referees for their helpful remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Augustin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Augustin, C., Steinbach, O. (2013). FETI Methods for the Simulation of Biological Tissues. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_59

Download citation

Publish with us

Policies and ethics