Skip to main content

Earthquake Mechanisms and Stress Field

  • Living reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering

Synonyms

Dynamics and mechanics of faulting; Earthquake source observations; Focal mechanism; Rock failure; Shear faulting; Tectonic stress; Tensile faulting

Introduction

Earthquakes are processes associated with the sudden rupture of rocks along cracks, fractures or faults exposed to stress field in the Earth’s crust and lithosphere. If stress reaches a critical value exceeding strength of faults or fractures in rock, accumulated energy of elastic deformation is partially spent for anelastic deformations in the focal zone and partially released and radiated in the form of seismic waves. Stress in the Earth’s crust causing earthquakes can be of tectonic or non-tectonic origin (Ruff 2002; Zoback 2007; Zang and Stephansson 2010). The main source of non-tectonic stress within the Earth is gravitational loading. This stress is vertical with largest lateral variations near the Earth’s surface being more homogeneous at depth. On the other hand, tectonic stress is mostly horizontal and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson EM (1951) The dynamics of faulting. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Angelier J (2002) Inversion of earthquake focal mechanisms to obtain the seismotectonic stress IV – a new method free of choice among nodal lines. Geophys J Int 150:588–609

    Article  Google Scholar 

  • Bott MHP (1959) The mechanics of oblique slip faulting. Geol Mag 96:109–117

    Article  Google Scholar 

  • Byerlee J (1978) Fiction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Fischer T, Guest A (2011) Shear and tensile earthquakes caused by fluid injection. Geophys Res Lett 38, L05307. doi:10.1029/2010GL045447

    Google Scholar 

  • Fowler CMR (1990) The solid earth. An introduction to global geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 89:9305–9320

    Article  Google Scholar 

  • Hardebeck JL (2006) Homogeneity of small-scale earthquakes faulting, stress, and fault strength. Bull Seismol Soc Am 96:1675–1688

    Article  Google Scholar 

  • Hardebeck JL, Michael AJ (2006) Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence. J Geophys Res 111, B11310

    Article  Google Scholar 

  • Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2008) The world stress map database release 2008. doi:10.1594/GFZ.WSM.Rel2008

    Google Scholar 

  • Ickrath M, Bohnhoff M, Bulut F, Dresen G (2014) Stress rotation and recovery in conjunction with the 1999 Izmit Mw 7.4 earthquake. Geophys J Int 196:951–956

    Article  Google Scholar 

  • Jaeger JC, Cook NGW, Zimmerman RW (2007) Fundamentals of rock mechanics, 4th edn. Blackwell, Oxford

    Google Scholar 

  • Julian BR, Miller AD, Foulger GR (1998) Non-double-couple earthquakes. 1. Theory. Rev Geophys 36:525–549

    Article  Google Scholar 

  • Lay T, Wallace TC (1995) Modern global seismology. Academic, New York

    Google Scholar 

  • Lund B, Slunga R (1999) Stress tensor inversion using detailed microearthquake information and stability constraints: application to Ölfus in southwest Iceland. J Geophys Res 104:14947–14964

    Article  Google Scholar 

  • Martínez-Garzón P, Bohnhoff M, Kwiatek G, Dresen G (2013) Stress tensor changes related to fluid injection at The Geysers geothermal field, California. Geophys Res Lett 40:2596–2601

    Article  Google Scholar 

  • Maury J, Cornet FH, Dorbath L (2013) A review of methods for determining stress fields from earthquake focal mechanisms: application to the Sierentz 1980 seismic crisis (Upper Rhine graben). Bull Soc Geol Fr 184(4–5):319–334

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook. Tools for seismic analysis in porous media. 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 89:11517–11526

    Article  Google Scholar 

  • Michael AJ (1987) Use of focal mechanisms to determine stress: a control study. J Geophys Res 92(B1):357–368

    Article  Google Scholar 

  • Ruff LJ (2002) State of stress within the earth. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology. Part A. Academic, New York

    Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Simpson RW (1997) Quantifying Anderson’s fault types. J Geophys Res 102:17909–17919

    Article  Google Scholar 

  • Townend J, Sherburn S, Arnold R, Boese C, Woods L (2012) Three-dimensional variations in present-day tectonic stress along the Australia–Pacific plate boundary in New Zealand. Earth Planet Sci Lett 353–354:47–59

    Article  Google Scholar 

  • Vavryčuk V (2006) Spatially dependent seismic anisotropy in the Tonga subduction zone: a possible contributor to the complexity of deep earthquakes. Phys Earth Planet Inter 155:63–72. doi:10.1016/j.pepi.2005.10.005

    Article  Google Scholar 

  • Vavryčuk V (2011a) Principal earthquakes: theory and observations from the 2008 West Bohemia swarm. Earth Planet Sci Lett 305:290–296. doi:10.1016/j.epsl.2011.03.002

    Article  Google Scholar 

  • Vavryčuk V (2011b) Tensile earthquakes: theory, modeling, and inversion. J Geophys Res 116, B12320. doi:10.1029/2011JB008770

    Article  Google Scholar 

  • Vavryčuk V (2014) Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophys J Int 199(1):69–77. doi:10.1093/gji/ggu224

    Article  Google Scholar 

  • Vavryčuk V, Bouchaala F, Fischer T (2013) High-resolution fault image from accurate locations and focal mechanisms of the 2008 swarm earthquakes in West Bohemia, Czech Republic. Tectonophysics 590:189–195. doi:10.1016/j.tecto.2013.01.025

    Article  Google Scholar 

  • Wallace RE (1951) Geometry of shearing stress and relation to faulting. J Geol 59:118–130. doi:10.1086/625831

    Article  Google Scholar 

  • Wu Y-M, Hsu Y-J, Chang C-H, Teng LS, Nakamura M (2010) Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: insights from comprehensive first motion focal mechanism catalog. Earth Planet Sci Lett 298:306–3016

    Article  Google Scholar 

  • Yang,Y-R, Johnson, KM, Chuang, RY (2013) Inversion for deviatoric absolute crustal stress using focal mechanisms and coseismic stress changes: The 2001 M9 Tohoku-oki, Japan, earthquake, J Geophys Res 118:5516–5529

    Google Scholar 

  • Zang A, Stephansson O (2010) Stress field of the earth’s crust. Springer, New York

    Book  Google Scholar 

  • Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Vavryčuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Vavryčuk, V. (2015). Earthquake Mechanisms and Stress Field. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_295-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_295-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics