Skip to main content

Reconciliation Revisited: Handling Multiple Optima When Reconciling with Duplication, Transfer, and Loss

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7821))

Abstract

Phylogenetic tree reconciliation is a powerful approach for inferring evolutionary events like gene duplication, horizontal gene transfer, and gene loss, which are fundamental to our understanding of molecular evolution. While Duplication-Loss (DL) reconciliation leads to a unique maximum-parsimony solution, Duplication-Transfer-Loss (DTL) reconciliation yields a multitude of optimal solutions, making it difficult the infer the true evolutionary history of the gene family.

Here, we present an effective, efficient, and scalable method for dealing with this fundamental problem in DTL reconciliation. Our approach works by sampling the space of optimal reconciliations uniformly at random and aggregating the results. We present an algorithm to efficiently sample the space of optimal reconciliations uniformly at random in O(mn 2) time, where m and n denote the number of genes and species, respectively. We use these samples to understand how different optimal reconciliations vary in their node mapping and event assignments, and to investigate the impact of varying event costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Storm, C.E.V., Sonnhammer, E.L.L.: Automated ortholog inference from phylogenetic trees and calculation of orthology reliability. Bioinformatics 18(1), 92–99 (2002)

    Article  Google Scholar 

  2. Koonin, E.V.: Orthologs, paralogs, and evolutionary genomics. Annual Review of Genetics 39(1), 309–338 (2005)

    Article  Google Scholar 

  3. Wapinski, I., Pferrer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007)

    Article  Google Scholar 

  4. van der Heijden, R., Snel, B., van Noort, V., Huynen, M.: Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinformatics 8(1), 83 (2007)

    Article  Google Scholar 

  5. Vilella, A.J., Severin, J., Ureta-Vidal, A., Heng, L., Durbin, R., Birney, E.: Ensemblcompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Research 19(2), 327–335 (2009)

    Article  Google Scholar 

  6. Sennblad, B., Lagergren, J.: Probabilistic orthology analysis. Syst. Biol. 58(4), 411–424 (2009)

    Article  Google Scholar 

  7. Chen, K., Durand, D., Farach-Colton, M.: Notung: dating gene duplications using gene family trees. In: RECOMB, pp. 96–106 (2000)

    Google Scholar 

  8. David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469, 93–96 (2011)

    Article  Google Scholar 

  9. Rasmussen, M.D., Kellis, M.: A bayesian approach for fast and accurate gene tree reconstruction. Molecular Biology and Evolution 28(1), 273–290 (2011)

    Article  Google Scholar 

  10. Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., Vision, T.J.: Genome-scale phylogenetics: Inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60(2), 117–125 (2011)

    Article  Google Scholar 

  11. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage. a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)

    Article  Google Scholar 

  12. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Syst. Biol. 43(1), 58–77 (1994)

    Google Scholar 

  13. Bonizzoni, P., Vedova, G.D., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theor. Comput. Sci. 347(1-2), 36–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Górecki, P., Tiuryn, J.: Dls-trees: A model of evolutionary scenarios. Theor. Comput. Sci. 359, 378–399 (2006)

    Article  MATH  Google Scholar 

  15. Chauve, C., Doyon, J.P., El-Mabrouk, N.: Gene family evolution by duplication, speciation, and loss. J. Comput. Biol. 15(8), 1043–1062 (2008)

    Article  MathSciNet  Google Scholar 

  16. Gorbunov, K.Y., Liubetskii, V.A.: Reconstructing genes evolution along a species tree. Molekuliarnaia Biologiia 43(5), 946–958 (2009)

    Google Scholar 

  17. Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Tofigh, A., Hallett, M.T., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biology Bioinform. 8(2), 517–535 (2011)

    Article  Google Scholar 

  19. Tofigh, A.: Using Trees to Capture Reticulate Evolution: Lateral Gene Transfers and Cancer Progression. PhD thesis, KTH Royal Institute of Technology (2009)

    Google Scholar 

  20. Chen, Z.Z., Deng, F., Wang, L.: Simultaneous identification of duplications, losses, and lateral gene transfers. IEEE/ACM Trans. Comput. Biology Bioinform. 9(5), 1515–1528 (2012)

    Article  MathSciNet  Google Scholar 

  21. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12), 283–291 (2012)

    Article  Google Scholar 

  22. Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., Durand, D.: Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28(18), 409–415 (2012)

    Article  Google Scholar 

  23. Charleston, M.: Jungles: A new solution to the host-parasite phylogeny reconciliation problem. Mathematical Biosciences 149, 191–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ronquist, F.: Parsimony analysis of coevolving species associations. In: Page, R.D.M. (ed.) Tangled Trees: Phylogeny, Cospeciation and Coevolution, pp. 22–64. The University of Chicago Press (2003)

    Google Scholar 

  25. Merkle, D., Middendorf, M., Wieseke, N.: A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinformatics 11(suppl. 1), S60 (2010)

    Google Scholar 

  26. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem. Algorithm. Mol. Biol. 5(1), 16 (2010)

    Article  Google Scholar 

  27. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The cophylogeny reconstruction problem is np-complete. J. Comput. Biol. 18(1), 59–65 (2011)

    Article  MathSciNet  Google Scholar 

  28. Rutschmann, F.: Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergence times. Divers. Distrib. 12(1), 35–48 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bansal, M.S., Alm, E.J., Kellis, M. (2013). Reconciliation Revisited: Handling Multiple Optima When Reconciling with Duplication, Transfer, and Loss. In: Deng, M., Jiang, R., Sun, F., Zhang, X. (eds) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science(), vol 7821. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37195-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37195-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37194-3

  • Online ISBN: 978-3-642-37195-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics