Skip to main content

Modeling Hidden Topics with Dual Local Consistency for Image Analysis

  • Conference paper
Computer Vision – ACCV 2012 (ACCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7724))

Included in the following conference series:

Abstract

Image representation is the crucial component in image analysis and understanding. However, the widely used low-level features cannot correctly represent the high-level semantic content of images in many situations due to the “semantic gap”. In order to bridge the “semantic gap”, in this brief, we present a novel topic model, which can learn an effective and robust mid-level representation in the latent semantic space for image analysis. In our model, the ℓ1-graph is constructed to model the local image neighborhood structure and the word co-occurrence is computed to capture the local word consistency. Then, the local information is incorporated into the model for topic discovering. Finally, the generalized EM algorithm is used to estimate the parameters. As our model considers both the local image structure and local word consistency simultaneously when estimating the probabilistic topic distributions, the image representations can have more powerful description ability in the learned latent semantic space. Extensive experiments on the publicly available databases demonstrate the effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)

    Google Scholar 

  2. Li, P., Wang, M., Cheng, J., Xu, C., Lu, H.: Spectral hashing with semantically consistent graph for image indexing. IEEE Transactions on Multimedia 14 (2012)

    Google Scholar 

  3. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using nonnegative spectral analysis. In: AAAI (2012)

    Google Scholar 

  4. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning 42, 177–196 (2001)

    Article  MATH  Google Scholar 

  5. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  6. Bosch, A., Zisserman, A., Muñoz, X.: Scene Classification Via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Monay, F., Gatica-Perez, D.: PLSA-based image auto-annotation: constraining the latent space. In: ACM Multimedia, pp. 348–351 (2004)

    Google Scholar 

  8. Cao, L., Li, F.: Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  9. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  10. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computing 15, 1373–1396 (2002)

    Article  Google Scholar 

  11. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  12. Cai, D., Mei, Q., Han, J., Zhai, C.: Modeling hidden topics on document manifold. In: CIKM, pp. 911–920 (2008)

    Google Scholar 

  13. Cai, D., Wang, X., He, X.: Probabilistic dyadic data analysis with local and global consistency. In: ICML (2009)

    Google Scholar 

  14. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  15. Tenenbaum, J.: Mapping a manifold of perceptual observations. In: NIPS, pp. 682–688 (1997)

    Google Scholar 

  16. He, X., Niyogi, P.: Locality preserving projections. In: NIPS (2003)

    Google Scholar 

  17. He, X., Cai, D., Yan, S., Zhang, H.: Neighborhood preserving embedding. In: ICCV, pp. 1208–1213 (2005)

    Google Scholar 

  18. Cheng, B., Yang, J., Yan, S., Fu, Y., Huang, T.: Learning with ℓ1-graph for image analysis. IEEE Trans. on Image Processing 19, 858–866 (2010)

    Article  MathSciNet  Google Scholar 

  19. Donoho, D.: For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Communications on Pure and applied Mathematics 59, 797–829 (2004)

    Article  MathSciNet  Google Scholar 

  20. Meinshansen, N., Buhlmann, P.: High-dimensional graphs and variable selection with the lasso. The Annals of Statistics 34, 1436–1462 (2006)

    Article  MathSciNet  Google Scholar 

  21. Wright, J., Genesh, A., Yang, A., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. on Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  22. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from in complete data via the EM algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Learning in Graphical Models (1998)

    Google Scholar 

  24. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical recipes in C: the art of scientific computing. Cambridge University Press (1992)

    Google Scholar 

  25. Li, F., Rob, F., Pietro, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: CVPR Workshop on Generative Model Based Vision (2004)

    Google Scholar 

  26. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  27. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. In: SIGIR, pp. 267–273 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, P., Cheng, J., Lu, H. (2013). Modeling Hidden Topics with Dual Local Consistency for Image Analysis. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds) Computer Vision – ACCV 2012. ACCV 2012. Lecture Notes in Computer Science, vol 7724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37331-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37331-2_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37330-5

  • Online ISBN: 978-3-642-37331-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics