Skip to main content

Selective Ensemble of Classifier Chains

  • Conference paper
Multiple Classifier Systems (MCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7872))

Included in the following conference series:

Abstract

In multi-label learning, the relationship among labels is well accepted to be important, and various methods have been proposed to exploit label relationships. Amongst them, ensemble of classifier chains (ECC) which builds multiple chaining classifiers by random label orders has drawn much attention. However, the ensembles generated by ECC are often unnecessarily large, leading to extra high computational and storage cost. To tackle this issue, in this paper, we propose selective ensemble of classifier chains (SECC) which tries to select a subset of classifier chains to composite the ensemble whilst keeping or improving the performance. More precisely, we focus on the performance measure F1-score, and formulate this problem as a convex optimization problem which can be efficiently solved by the stochastic gradient descend method. Experiments show that, compared with ECC, SECC is able to obtain much smaller ensembles while achieving better or at least comparable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  2. Cesa-Bianchi, N., Re, M., Valentini, G.: Synergy of multi-label hierarchical ensembles, data fusion, and cost-sensitive methods for gene functional inference. Machine Learning 88(1), 209–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 1–27 (2011)

    Article  Google Scholar 

  4. Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, pp. 279–286 (2010)

    Google Scholar 

  5. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems 14, pp. 681–687. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 73(2), 133–153 (2008)

    Article  Google Scholar 

  8. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, Bremen, Germany, pp. 195–200 (2005)

    Google Scholar 

  9. Giacinto, G., Roli, F., Fumera, G.: Design of effective multiple classifier systems by clustering of classifiers. In: Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain, pp. 160–163 (2000)

    Google Scholar 

  10. Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, pp. 377–384 (2005)

    Google Scholar 

  11. Kumar, A., Vembu, S., Menon, A.K., Elkan, C.: Learning and inference in probabilistic classifier chains with beam search. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 665–680. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Li, N., Tsang, I.W., Zhou, Z.-H.: Efficient optimization of performance measures by classifier adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2013) (preprint)

    Google Scholar 

  13. Li, N., Zhou, Z.-H.: Selective ensemble under regularization framework. In: Benediktsson, J.A., Kittler, J., Roli, F. (eds.) MCS 2009. LNCS, vol. 5519, pp. 293–303. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. McCallum, A.: Multi-label text classification with a mixture model trained by EM. Working Notes of AAAI 1999 Workshop on Text Learning (1999)

    Google Scholar 

  15. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proceedings of the 8th IEEE International Conference on Data Mining, Pisa, Italy, pp. 995–1000 (2008)

    Google Scholar 

  16. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)

    Article  Google Scholar 

  17. Schapire, R., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2-3), 135–168 (2000)

    Article  MATH  Google Scholar 

  18. Shalev-Shwartz, S., Tewari, A.: Stochastic methods for l1-regularized loss minimization. Journal of Machine Learning Research 12, 1865–1892 (2011)

    MathSciNet  Google Scholar 

  19. Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Advances in Neural Information Processing Systems 16, pp. 25–32. MIT Press, Cambridge (2003)

    Google Scholar 

  20. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proceedings of 2008 International Conference on Music Information Retrieval, Philadelphia, PA, pp. 325–330 (2008)

    Google Scholar 

  21. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: MULAN: A Java library for multi-label learning. Journal of Machine Learning Research 12, 2411–2414 (2011)

    MathSciNet  Google Scholar 

  23. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Transactions on Audio, Speech and Language Processing 16(2), 467–476 (2008)

    Article  Google Scholar 

  25. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Machine Learning 73(2), 185–214 (2008)

    Article  Google Scholar 

  26. Zaragoza, J.H., Sucar, L.E., Morales, E.F., Bielza, C., Larrañaga, P.: Bayesian chain classifiers for multidimensional classification. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain, pp. 2192–2197 (2011)

    Google Scholar 

  27. Zhang, M.-L., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, pp. 999–1007 (2010)

    Google Scholar 

  28. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  29. Zhang, Y., Burer, S., Street, W.: Ensemble pruning via semi-definite programming. Journal of Machine Learning Research 7, 1315–1338 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Zhou, Z.-H.: Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC, Boca Raton, FL (2012)

    Google Scholar 

  31. Zhou, Z.-H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial Intelligence 137(1-2), 239–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, N., Zhou, ZH. (2013). Selective Ensemble of Classifier Chains. In: Zhou, ZH., Roli, F., Kittler, J. (eds) Multiple Classifier Systems. MCS 2013. Lecture Notes in Computer Science, vol 7872. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38067-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38067-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38066-2

  • Online ISBN: 978-3-642-38067-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics