Skip to main content

Abstract

Recent research in areas such as SAT solving and Integer Linear Programming has shown that the performances of a single arbitrarily efficient solver can be significantly outperformed by a portfolio of possibly slower on-average solvers. We report an empirical evaluation and comparison of portfolio approaches applied to Constraint Satisfaction Problems (CSPs). We compared models developed on top of off-the-shelf machine learning algorithms with respect to approaches used in the SAT field and adapted for CSPs, considering different portfolio sizes and using as evaluation metrics the number of solved problems and the time taken to solve them. Results indicate that the best SAT approaches have top performances also in the CSP field and are slightly more competitive than simple models built on top of classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amadini, R., Gabbrielli, M., Mauro, J.: An Empirical Evaluation of Portfolios Approaches for solving CSPs. ArXiv e-prints (December 2012), http://arxiv.org/pdf/1212.0692v1

  2. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection (July 2009)

    Google Scholar 

  3. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)

    Article  MathSciNet  Google Scholar 

  4. Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual (2012)

    Google Scholar 

  5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  6. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - Instance-Specific Algorithm Configuration. In: ECAI, pp. 751–756 (2010)

    Google Scholar 

  8. Kiziltan, Z., Mandrioli, L., Mauro, J., O’Sullivan, B.: A classification-based approach to managing a solver portfolio for CSPs. In: AICS (2011)

    Google Scholar 

  9. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Malitsky, Y., Sellmann, M.: Instance-Specific Algorithm Configuration as a Method for Non-Model-Based Portfolio Generation. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 244–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Morara, M., Mauro, J., Gabbrielli, M.: Solving XCSP problems by using Gecode. In: CILC, pp. 401–405 (2011)

    Google Scholar 

  12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: AICS 2008 (2009)

    Google Scholar 

  14. Roussel, O., Lecoutre, C.: XML Representation of Constraint Networks: Format XCSP 2.1. CoRR, abs/0902.2362 (2009)

    Google Scholar 

  15. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio methods. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

    Google Scholar 

  16. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection. In: AAAI (2010)

    Google Scholar 

  17. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating Component Solver Contributions to Portfolio-Based Algorithm Selectors. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amadini, R., Gabbrielli, M., Mauro, J. (2013). An Empirical Evaluation of Portfolios Approaches for Solving CSPs. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol 7874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38171-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38171-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38170-6

  • Online ISBN: 978-3-642-38171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics