Skip to main content

Resolving Rooted Triplet Inconsistency by Dissolving Multigraphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7876))

Abstract

The Minimum Rooted Triplet Inconsistency (MinRTI) problem represents a key computational task in the construction of phylogenetic trees. Inspired by Aho et al’s seminal paper and Bryant’s thesis, we describe an edge-labelled multigraph problem, Minimum Dissolving Graph (MinDG) and show that it is equivalent to MinRTI. We prove that on an n-vertex graph, for every ε > 0, MinDG is hard to approximate within a factor in \(O(2^{\log^{1-\ensuremath{\varepsilon}}n})\), even on trees formed by multi-edges. Via a further reduction, this result applies to MinRTI, resolving the open question of whether there is a sub-linear approximation factor for MinRTI. In addition, we provide polynomial-time algorithms that return optimal solutions when the input multigraph is restricted to a multi-edge path or a simple tree.

Supported in part by an Australian Research Council Future Fellowship and The Melbourne School of Engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maddison, D., Schulz, K., Maddison, W.: The Tree of Life Web Project. Zootaxa 1668, 19–40 (2007)

    Google Scholar 

  2. Erdős, P., Steel, M., Székely, L., Warnow, T.: A few logs suffice to build (almost) all trees (i). Random Structures and Algorithms 14(2), 153–184 (1999)

    Article  MathSciNet  Google Scholar 

  3. Jiang, T., Kearney, P., Li, M.: A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM Journal on Computing 30(6), 1942–1961 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Snir, S., Yuster, R.: A linear time approximation scheme for maximum quartet consistency on sparse sampled inputs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 339–350. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Snir, S., Yuster, R.: Reconstructing approximate phylogenetic trees from quartet samples. In: SODA 2010: Proceedings of the Twenty-First ACM-SIAM Symposium on Discrete Algorithms, pp. 1035–1044 (2010)

    Google Scholar 

  6. Snir, S., Rao, S.: Using Max Cut to enhance rooted trees consistency. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(4), 323–333 (2006)

    Article  Google Scholar 

  7. Snir, S., Rao, S.: Quartets MaxCut: A divide and conquer quartets algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7(4), 704–718 (2010)

    Article  Google Scholar 

  8. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM Journal on Computing 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bryant, D.: Building Trees, Hunting for Trees, and Comparing Trees. PhD thesis, Department of Mathematics, University of Canterbury, New Zealand (1997)

    Google Scholar 

  11. Jansson, J.: On the complexity of inferring rooted evolutionary trees. Electronic Notes in Discrete Mathematics 7, 50–53 (2001)

    Article  MathSciNet  Google Scholar 

  12. Wu, B.: Constructing the maximum consensus tree from rooted triples. Journal of Combinatorial Optimization 8(1), 29–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Byrka, J., Guillemot, S., Jansson, J.: New results on optimizing rooted triplets consistency. Discrete Applied Mathematics 158(11), 1136–1147 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillemot, S., Mnich, M.: Kernel and fast algorithm for dense triplet inconsistency. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS, vol. 6108, pp. 247–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Byrka, J., Gawrychowski, P., Huber, K., Kelk, S.: Worst-case optimal approximation algorithms for maximizing triplet consistency within phylogenetic networks. Journal of Discrete Algorithms 8(1), 65–75 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Iersel, L., Kelk, S., Mnich, M.: Uniqueness, intractability and exact algorithms: Reflections on level-k phylogenetic networks. Journal of Bioinformatics and Computational Biology 7(4), 597–623 (2009)

    Article  Google Scholar 

  17. Jansson, J., Lingas, A., Lundell, E.: A triplet approach to approximations of evolutionary trees. Poster H15 presented at RECOMB 2004: Manuscript obtained from first author’s homepage (2004)

    Google Scholar 

  18. Gasieniec, L., Jansson, J., Lingas, A., Östlin, A.: On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization 3(2), 183–197 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Basu, S., Davidson, I., Wagstaff, K.: Constrainted Clustering: Advances in Algorithms, Theory, and Applications. CRC Press (2009)

    Google Scholar 

  20. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1), 89–113 (2004)

    Article  MATH  Google Scholar 

  21. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC 2007: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 95–103 (2007)

    Google Scholar 

  22. Chen, N.: On the approximability of influence in social networks. SIAM Journal on Discrete Mathematics 23(3), 1400–1415 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Arora, S., Lund, C.: Hardness of approximations. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard Problems, PWS Publishing, Boston (1996)

    Google Scholar 

  24. Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. McGraw-Hill (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chester, A., Dondi, R., Wirth, A. (2013). Resolving Rooted Triplet Inconsistency by Dissolving Multigraphs. In: Chan, TH.H., Lau, L.C., Trevisan, L. (eds) Theory and Applications of Models of Computation. TAMC 2013. Lecture Notes in Computer Science, vol 7876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38236-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38236-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38235-2

  • Online ISBN: 978-3-642-38236-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics