Skip to main content

The Family Beggiatoaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The family Beggiatoaceae contains a wide range of morphologically conspicuous, aerobic, or nitrate-dependent sulfide-oxidizing bacteria that span the range from obligate sulfur-based chemolithoautotrophy to heterotrophic growth supplemented by sulfur oxidation. The Beggiatoaceae are the model organisms for the concept of chemolithotrophy, developed by Sergei Winogradsky during his postgraduate studies using natural populations of filamentous freshwater Beggiatoaceae collected in sulfur springs. Since the metabolism of the Beggiatoaceae requires access to reduced sulfur species and oxidants such as oxygen or nitrate, these bacteria thrive in microbial mats, surficial sediments, and sediment–water interfaces where these electron donors and acceptors coexist and can be intercepted for microbial energy generation before gradual abiotic sulfide oxidation sets in. All Beggiatoaceae have the ability to oxidize sulfide to elemental sulfur that is stored as intracellular sulfur globules, which make the cells highly refractory and conspicuous with the unaided eye and under the microscope. This characteristic, together with the absence of photosynthetic pigments, has led to their traditional designation as members of the “colorless sulfur bacteria,” in contrast to the photosynthetic purple and green sulfur bacteria or the cyanobacteria. The white, yellow, or occasionally orange color of the Beggiatoaceae, their frequently filamentous or chain-like morphology, their growth pattern in flocs and mats on sediment surfaces, and their large cell size and capacity for storing several different compounds intracellularly have made these organisms fascinating research targets. Extensive microscopic and morphological surveys have focused on these bacteria since the late nineteenth and early twentieth century. To a surprising extent, early microscopic and morphological observations on large, morphologically conspicuous sulfur bacteria can be reintegrated into the emerging molecular and phenotypic taxonomy of the Beggiatoaceae today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Barry JP, Nelson DC (1999) Phylogenetic affinity of a wide, vacuolate, nitrate-accumulating Beggiatoa sp. from Monterey Canyon, California, with Thioploca spp. Appl Environ Microbiol 65:270–277

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ahmad A, Kalanetra KM, Nelson DC (2006) Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria. Can J Microbiol 52:591–598

    PubMed  CAS  Google Scholar 

  • Angert ER (2012) DNA replication and genomic architecture of very large bacteria. Annu Rev Microbiol 66:197–212

    PubMed  CAS  Google Scholar 

  • Aranda C, Paredes J, Valenzuela C, Lam P, Guillou L (2010) 16S rRNA gene-based molecular analysis of mat-forming and accompanying bacteria covering organically-enriched marine sediments underlying a salmon farm in Southern Chile (Calbuco Island). Gayana 74:125–135

    Google Scholar 

  • Arning ET, Birgel D, Brunner B, Peckmann J (2009) Bacterial formation of phosphatic laminites off Peru. Geobiology 7:295–307

    PubMed  CAS  Google Scholar 

  • Bailey JV, Joye SB, Kalanetra KM, Flood BE, Corsetti FA (2007) Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature 445:198–201

    PubMed  CAS  Google Scholar 

  • Bailey JV, Salman V, Rouse GW, Schulz-Vogt HN, Levin LA, Orphan VJ (2011) Dimorphism in methane seep-dwelling ecotypes of the largest known bacteria. ISME J 5:1926–1935

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bavendamm W (1924) Die farblosen und roten Schwefelbakterien des Süß- und Salzwassers. Pflanzenforsch 2:1–156

    Google Scholar 

  • Bernard C, Fenchel T (1995) Mats of colourless sulphur bacteria 2. Structure, composition of biota and successional patterns. Mar Ecol Prog Ser 128:171–179

    Google Scholar 

  • Bernhard JM, Visscher PT, Bowser SS (2003) Submillimeter life positions of bacteria, protists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol Oceanogr 48:813–828

    Google Scholar 

  • Beutler M, Hinck S, de Beer D (2009) A method for imaging of low pH in live cells based on excited state saturation. J Microbial Methods 77:98–101

    CAS  Google Scholar 

  • Beutler M, Milucka J, Hinck S, Schreiber F, Brock J, Mussmann M, Schulz-Vogt HN, de Beer D (2012) Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae. Environ Microbiol 14:2911–2919

    PubMed  CAS  Google Scholar 

  • Bissett A, Burke C, Cook PLM, Bowman JP (2007) Bacterial community shifts in organically perturbed sediments. Environ Microbiol 9:46–60

    PubMed  CAS  Google Scholar 

  • Bondarev V, Richter M, Romero S, Piel J, Schwedt A, Schulz-Vogt HN (2013) The genus Pseudovibrio contains metabolically versatile bacteria adapted for symbiosis. Environ Microbiol 15:2095–2113

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bourne DG, van der Zee MJJ, Botté ES, Sato Y (2013) Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions. Environ Microbiol Rep 5:518–524

    PubMed  CAS  Google Scholar 

  • Bowles MW, Nigro LM, Teske AP, Joye SB (2012) Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally-altered sediments. Front Microbiol 3:377. doi:10.3389/fmicb.2012.03377

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN (2012) Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek 101:347–357

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brock J, Schulz-Vogt HN (2011) Sulfide induces phosphate release from polyphosphate in cultures of a marine Beggiatoa strain. ISME J 5:497–506

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brock TD (1974) Family IV. Leucotrichaceae Buchanan 1957. In: Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 118–119

    Google Scholar 

  • Brüchert V, Jørgensen BB, Neumann K, Riechmann D, Schlosser M, Schulz HN (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518

    Google Scholar 

  • Burton SD, Morita RY, Miller W (1966) Utilization of acetate by Beggiatoa. J Bacteriol 91:1192–1200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burton SD, Lee JD (1978) Improved enrichment and isolation procedures for obtaining pure cultures of Beggiatoa. Appl Environ Microbiol 45:614–617

    Google Scholar 

  • Caldwell DE, Caldwell SJ, Tiedje JM (1975) An ecological study on the sulfur bacteria from the littoral zone of a Michigan Lake and a sulfur spring in Florida. Plant Soil 43:101–114

    Google Scholar 

  • Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum, New York, pp 243–255

    Google Scholar 

  • Cannon GC, Strohl WR, Larkin JM, Shively JM (1979) Cytochromes in Beggiatoa alba. Curr Microbiol 2:263–266

    CAS  Google Scholar 

  • Carrasco FD, Gallardo VA, Baltazar M (1999) The structure of the benthic macrofauna collected across a transect at the central Chile shelf and relationships with giant sulfur bacteria Thioploca spp. mats. Cah Biol Mar 40:195–202

    Google Scholar 

  • Carlton RG, Richardson LL (1995) Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: black band disease of corals. FEMS Microbiol Ecol 18:155–162

    CAS  Google Scholar 

  • Cataldi MS (1940) Aislamiento de Beggiatoa alba en cultivo puro. Rev Inst Bacteriol Dept Nacl Hig (Buenos Aires) 9:393–423

    Google Scholar 

  • Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin P-M, Sarrazin J, Godfroy A (2011) Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 76:524–540

    PubMed  Google Scholar 

  • de Albuquerque JP, Keim CN, Lins U (2010) Comparative analysis of Beggiatoa from hypersaline and marine environments. Micron 41:507–517

    PubMed  Google Scholar 

  • De Beer D, Sauter E, Niemann H, Kaul N, Foucher JP, Witte U et al (2006) In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud volcano. Limnol Oceanogr 51:1315–1331

    Google Scholar 

  • Deming J, Reysenbach A-L, Macko S, Smith CR (1997) Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: bone-colonizing bacteria and invertebrate endobionts. Microsc Res Tech 37:162–170

    PubMed  CAS  Google Scholar 

  • Dermott R, Legner M (2002) Dense mat-forming bacterium Thioploca ingrica (Beggiatoaceae) in eastern Lake Ontario: implications to the benthic food web. J Great Lakes Res 28:688–697

    CAS  Google Scholar 

  • Dillon JG, Miller S, Bebout B, Hullar M, Pinel N, Stahl DA (2009) Spatial and temporal variability in a stratified hypersaline microbial mat community. FEMS Microbiol Ecol 68:46–58

    PubMed  CAS  Google Scholar 

  • Drawert H, Metzner-Küstner I (1958) Fluoreszenz- und elektronenmikroskopische Unitersuchungen an Beggiatoa alba und Thiothrix nivea. Arch Mikrobiol 31:422–434

    Google Scholar 

  • Dunker R, Røy H, Kamp A, Jørgensen BB (2010) Motility patterns of filamentous sulfur bacteria Beggiatoa spp. FEMS Microbiol Ecol 77:176–185

    Google Scholar 

  • Dworkin M (2012) Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist. FEMS Microbiol Rev 36:364–379

    PubMed  CAS  Google Scholar 

  • Elliott JK, Spear E, Wyllie-Echeverria S (2006) Mats of Beggiatoa bacteria reveal that organic pollution from lumber mills inhibits growth of Zostera marina. Marine Ecol 27:372–380

    Google Scholar 

  • Emeis KC, Brüchert V, Currie B, Endler R, Ferdelman T, Kiessling A, Leipe T, Noli-Peard K, Struck U, Vogt T (2004) Shallow gas in shelf sediments of the Namibian coastal upwelling ecosystem. Cont Shelf Res 24:627–642

    Google Scholar 

  • Farias L (1998) Potential role of bacterial mats in the nitrogen budget of marine sediments: the case of Thioploca spp. Marine Ecol Prog Ser 170:291–292

    Google Scholar 

  • Farias L, Chuecas LA, Salamanca MA (1996) Effect of coastal upwelling on nitrogen regeneration from sediments and ammonium supply to the water column in Concepcion Bay, Chile. Estuar Coast Shelf Sci 43:137–155

    CAS  Google Scholar 

  • Faust L, Wolfe RS (1961) Enrichment and cultivation of Beggiatoa alba. J Bacteriol 81:99–106

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fenchel T, Bernard C (1995) Mats of colourless sulphur bacteria. I. Major microbial processes. Mar Ecol Prog Ser 128:161–170

    Google Scholar 

  • Ferdelman TG, Lee C, Pantoja S, Harder J, Bebout BM, Fossing H (1997) Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim Cosmochim Acta 61:3065–3079

    CAS  Google Scholar 

  • Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 374:713–715

    CAS  Google Scholar 

  • Fukui M, Teske A, Assmus B, Muyzer G, Widdel F (1999) Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch Microbiol 172:193–203

    PubMed  CAS  Google Scholar 

  • Gallardo VA (1963) Notas sobre la densidad de la fauna bentonica en el sublitoral del norte de Chile. Guyana 10:3–15

    Google Scholar 

  • Gallardo VA (1977a) Large benthic microbial communities in sulfide biota under Peru-Chile subsurface countercurrent. Nature 268:331–332

    Google Scholar 

  • Gallardo VA (1977b) On the discovery of a large microbial community living in the soft bottoms of the continental shelf off Chile and Peru. In: Annales del Instituto de Investigaciones Marinas de Punta de Betin. Suplemento No. 1: Memorias del seminario internacional sobre problemas de la ecologia marina actual y el futuro del hombre, Colombia, Marzo, pp 23–30

    Google Scholar 

  • Gallardo VA, Cañete JI, Roa R, Enríquez-Briones S, Baltazar M (1994) Recruitment of the squat lobster Pleuroncodes monodon on the continental shelf off Central Chile. J Crustacean Biol 14:665–669

    Google Scholar 

  • Gallardo VA, Carrasco FD, Roa R, Canete JI (1995) Ecological patterns in the benthic macrobiota across the continental shelf off central Chile. Ophelia 40:167–188

    Google Scholar 

  • Gallardo VA (1992) On the presence of metal stained organic material in Thioploca shelf bottoms off Bay of Concepcion, Chile. Gayana Oceanol 1:27–33

    Google Scholar 

  • Gallardo VA, Klingelhoeffer E, Arntz W, Graco M (1998) First report of the bacterium Thioploca in the Benguela ecosystem off Namibia. J Mar Biol Assoc UK 78:1007–1010

    Google Scholar 

  • Gallardo VA, Espinoza C (2007) New communities of large filamentous sulfur bacteria in the eastern South Pacific. Int Microbiol 10:97–102

    PubMed  Google Scholar 

  • Garcia-Pichel F, Mechling M, Castenholz RW (1994) Diel migration of microorganisms within a benthic, hypersaline mat community. Appl Environ Microbiol 60:1500–1511

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family I. Thiotrichaceae fam. nov. In: Garrity BM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, p 131

    Google Scholar 

  • Genthner FJ, Hook LA, Strohl WR (1985) Determination of the molecular mass of bacterial genomic DNA and plasmid copy number by high-pressure liquid chromatography. Appl Environ Microbiol 50:1007–1013

    PubMed  CAS  PubMed Central  Google Scholar 

  • Girnth A-C, Grünke S, Lichtschlag A, Felden J, Knittel K, Wenzhöfer F, de Beer D, Boetius A (2011) A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Environ Microbiol 13:495–505

    PubMed  CAS  Google Scholar 

  • Grabovich MY, Dubinina GA, Churikova VV, Korovina TI, Glushkov AF, Churikov SN (1993) Carbon metabolism of Beggiatoa leptomitiformis under conditions of chemo-organoheterotrophic growth. Microbiology 62:267–271 (Engl. translation of Mikrobiologiya)

    Google Scholar 

  • Grabovich MY, Dubinina GA, Lebedeva VY, Churikova VV (1998) Mixotrophic and lithoheterotrophic growth of the freshwater filamentous sulfur bacterium Beggiatoa leptomitiformis D-402. Microbiology 67:383–388

    CAS  Google Scholar 

  • Grabovich MY, Patritskaya VY, Muntyan MS, Dubinina GA (2001) Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions. FEMS Microbiol Lett 204:341–345

    PubMed  CAS  Google Scholar 

  • Graco M, Farias L, Molina V, Gutierrez D, Nielsen LP (2001) Massive developments of microbial mats following phytoplankton blooms in a naturally eutrophic bay: implications for nitrogen cycling. Limnol Oceanogr 46:821–832

    CAS  Google Scholar 

  • Grant J, Bathmann UV (1987) Swept away: resuspension of bacterial mats regulates benthic-pelagic exchange of sulfur. Science 236:1472–1474

    PubMed  CAS  Google Scholar 

  • Grünke S, Lichtschlag A, de Beer D, Kuypers M, Lösekann-Behrens T, Ramette A, Boetius A (2010) Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats. ISME J 4:1031–1043

    PubMed  Google Scholar 

  • Grünke S, Felden J, Lichtschlag A, Girnth A-C, de Beer D, Wenzhöfer F, Boetius A (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9:330–348

    PubMed  Google Scholar 

  • Grünke S, Lichtschlag A, de Beer D, Felden J, Salman V, Ramette A, Schulz-Vogt HN, Boetius A (2012) Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences 9:2947–2960

    Google Scholar 

  • Güde H, Strohl WR, Larkin JM (1981) Mixotrophic and heterotrophic growth of Beggiatoa alba in continuous culture. Arch Microbiol 129:357–360

    PubMed  Google Scholar 

  • Gundersen JK, Jørgensen BB, Larsen E, Jannasch HW (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360:454–455

    Google Scholar 

  • Hagen KD, Nelson DC (1996) Organic carbon utilization by obligately and facultatively autotrophic Beggiatoa strains in homogeneous and gradient cultures. Appl Environ Microbiol 62:947–953

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hagen KD, Nelson DC (1997) Use of reduced sulfur compounds by Beggiatoa spp.: enzymology and physiology of marine freshwater strains in homogeneous and gradient cultures. Appl Environ Microbiol 63:3957–3964

    PubMed  CAS  PubMed Central  Google Scholar 

  • Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG (1996) The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiology 142:2341–2354

    PubMed  CAS  Google Scholar 

  • Heijs SK, Damste JSS, Forney LJ (2005) Characterization of a deep-sea microbial mat from an active cold seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microbiol Ecol 54:47–56

    PubMed  CAS  Google Scholar 

  • Hinck S, Neu TR, Lavik G, Mussmann M, De Beer D, Jonkers HM (2007) Physiological adaptation of a nitrate-storing Beggiatoa sp. to diel cycling in a phototrophic hypersaline mat. Appl Environ Microbiol 73:7013–7022

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hinck S, Mussmann M, Salman V, Neu TR, Lenk S, de Beer D, Jonkers HM (2011) Vacuolated Beggiatoa-like filaments from different hypersaline environments form a novel genus. Environ Microbiol 13:3194–3205

    PubMed  Google Scholar 

  • Hinze G (1901) Über den Bau der Zellen von Beggiatoa mirabilis Cohn. Ber Dtsch Bot Ges 19:369–374

    Google Scholar 

  • Hinze G (1903) Thiophysa volutans, ein neues Schwefelbakterium. Ber Dtsch Bot Ges 21:309–316

    Google Scholar 

  • Høgslund S, Revsbech NP, Kuenen JG, Jørgensen BB, Gallardo VA, van de Vossenberg J, Nielsen JL, Arning ET, Nielsen LP (2009) Physiology and behaviour of marine Thioploca. ISME J 3:647–657

    PubMed  Google Scholar 

  • Høgslund S, Nielsen JL, Nielsen LP (2010) Distribution, ecology and molecular identification of Thioploca from Danish brackish water sediments. FEMS Microbiol Ecol 73:110–120

    PubMed  Google Scholar 

  • Holmkvist L, Arning ET, Küster-Heins K, Vandieken V, Peckmann J, Zabel M, Jørgensen BB (2010) Phosphate geochemistry, mineralization processes, and Thioploca distribution in shelf sediments off central Chile. Mar Geol 41:19–28

    Google Scholar 

  • Howarth R, Unz RF, Seviour EM, Seviour RJ, Blackall LL, Pickup RW, Jones JG, Yaguchi J, Head IM (1999) Phylogenetic relationships of filamentous sulfur bacteria (Thiothrix spp. and Eikelboom type 021N bacteria) isolated from wastewater-treatment plants and description of Thiothrix eikelboomii sp. nov., Thiothrix unzii sp. nov., Thiothrix fructosivorans sp. nov. and Thiothrix defluvii sp. nov. Int J Syst Bacteriol 49:1817–1827

    PubMed  CAS  Google Scholar 

  • Hüttel M, Forster S, Klöser S, Fossing H (1996) Vertical migration in these sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl Environ Microbiol 62:1863–1872

    Google Scholar 

  • Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa spp.) at a hydrothermal deep-sea vent site. Nature 342:834–836

    CAS  Google Scholar 

  • Jewell T, Huston SL, Nelson DC (2008) Methylotrophy of freshwater Beggiatoa alba strains. Appl Environ Microbiol 74:5575–5578

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jørgensen BB (1977) Distribution of colorless sulfur bacteria (Beggiatoa spp.) in a coastal marine sediment. Mar Biol 41:19–28

    Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil Trans R Soc Lond B 298:543–561

    Google Scholar 

  • Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat. Appl Environ Microbiol 38:46–58

    PubMed  PubMed Central  Google Scholar 

  • Jørgensen BB, Revsbech NP (1983) Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients. Appl Environ Microbiol 45:1261–1270

    PubMed  PubMed Central  Google Scholar 

  • Jørgensen BB, DesMarais DJ (1986) Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol Ecol 38:179–186

    PubMed  Google Scholar 

  • Jørgensen BB, Gallardo VA (1999) Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313

    Google Scholar 

  • Jørgensen BB, Teske A, Ahmad A (2005) Genus VII Thioploca Lauterborn. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of determinative bacteriology, vol 2, 2nd edn. Springer, New York, pp 171–178

    Google Scholar 

  • Jørgensen BB, Dunker R, Grünke S, Roy H (2010) Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79 degrees N). FEMS Microbiol Ecol 73:500–513

    PubMed  Google Scholar 

  • Joshi MM, Hollis JP (1976) Rapid enrichment of Beggiatoa from soil. J Appl Microbiol 40:223–224

    CAS  Google Scholar 

  • Joshi MM, Hollis JP (1977) Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulfide in the rice rhizosphere. Science 195:179–180

    PubMed  CAS  Google Scholar 

  • Kalanetra KM, Huston SL, Nelson DC (2004) Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Appl Environ Microbiol 70:7487–7496

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalanetra KM, Joye SB, Sunseri NR, Nelson DC (2005) Novel vacuolated sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ Microbiol 7:1451–1460

    PubMed  CAS  Google Scholar 

  • Kalanetra KM, Nelson DC (2010) Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol 157:791–800

    PubMed  PubMed Central  Google Scholar 

  • Kamp A, Stief S, Schulz-Vogt HN (2006) Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Appl Environ Microbiol 72:4755–4760

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kamp A, Roy H, Schulz-Vogt HN (2008) Video-supported analysis of Beggiatoa filament growth, breakage, and movement. Microb Ecol 56:484–491

    PubMed  PubMed Central  Google Scholar 

  • Klas Z (1937) Über den Formenkreis von Beggiatoa mirabilis. Arch Mikrobiol 8:312–320

    Google Scholar 

  • Kojima H, Teske A, Fukui M (2003) Morphological and phylogenetic characterizations of freshwater Thioploca species from Lake Biwa, Japan, and Lake Constance, Germany. Appl Environ Microbiol 69:390–398

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kojima H, Fukui M (2003) Phylogenetic analysis of Beggiatoa spp. from organic rich sediment of Tokyo Bay, Japan. Water Res 37:3216–3223

    PubMed  CAS  Google Scholar 

  • Kojima H, Koizumi Y, Fukui M (2006) Community structure of bacteria associated with sheaths of freshwater and brackish Thioploca species. Microb Ecol 52:765–773

    PubMed  Google Scholar 

  • Kojima H, Nakajima T, Fukui M (2007) Carbon source utilization and accumulation of respiration-related substances by freshwater Thioploca species. FEMS Microbiol Ecol 59:23–31

    PubMed  CAS  Google Scholar 

  • Kolkwitz R (1912) Über die Schwefelbakterie Thioploca ingrica Wislouch. Ber Deutsch Bot Ges 30:662–666

    Google Scholar 

  • Kolkwitz R (1918) Über die Schwefelbakterien-Flora des Solgrabens von Artern. Ber Deutsch Bot Ges 36:374–380

    Google Scholar 

  • Koppe F (1924) Die Schlammflora der ostholsteinischen Seen und des Bodensees. Arch Hydrobiol 14:619–672

    Google Scholar 

  • Kowallik U, Pringsheim EG (1966) The oxidation of hydrogen sulfide by Beggiatoa. Am J Bot 53:801–806

    CAS  Google Scholar 

  • Lane DJ, Harrison AP, Stahl DA, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  PubMed Central  Google Scholar 

  • Larkin JM, Henk MC, Aharon P (1994) Beggiatoa in microbial mats at hydrocarbon vents in the Gulf of Mexico and Warm Mineral Springs, Florida. Geo-Mar Lett 14:97–103

    CAS  Google Scholar 

  • Larkin JM, Henk MC (1989) Is “hollowness” an adaptation of large prokaryotes to their largeness? Microbiol Lett 42:69–72

    Google Scholar 

  • Larkin JM, Henk MC (1996) Filamentous sulfide-oxidizing bacteria at hydrocarbon seeps of the Gulf of Mexico. Microsc Res Tech 33:23–31

    PubMed  CAS  Google Scholar 

  • Larkin LM, Strohl NR (1983) Beggiatoa, Thiothrix and Thioploca. Annu Rev Microbiol 37:341–367

    PubMed  CAS  Google Scholar 

  • Laue BE, Nelson DC (1994) Characterization of the gene encoding the autotrophic ATP sulfurylase from the bacterial endosymbiont of the hydrothermal vent tube worm Riftia pachyptila. J Bacteriol 176:3723–3729

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lauterborn R (1907) Eine neue Gattung der Schwefelbakterien (Thioploca schmidlei nov. gen. nov. spec.). Ber Dtsch Bot Ges 25:238–242

    Google Scholar 

  • Lawry NH, Jani V, Jensen TE (1981) Identification of the sulfur inclusion body in Beggiatoa alba B18LD by energy-dispersive X-ray microanalysis. Curr Microbiol 6:71–74

    CAS  Google Scholar 

  • Leadbetter ER (1974) Family II. Beggiatoaceae. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 112–116

    Google Scholar 

  • Lichtschlag A, Felden J, Brüchert V, Boetius A, de Beer D (2010) Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Håkon Mosby mud volcano (Barents Sea). Limnol Oceanogr 55:931–949

    CAS  Google Scholar 

  • Lloyd KG, Albert DB, Biddle JF, Chanton JP, Pizarro O, Teske A (2010) Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS One 5:e8738

    PubMed  PubMed Central  Google Scholar 

  • Macalady JL, Lyon EH, Koffman B, Albertson LK, Meyer K, Galdenzi S, Mariani S (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72:5596–5609

    PubMed  CAS  PubMed Central  Google Scholar 

  • Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2:590–601

    PubMed  CAS  Google Scholar 

  • MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg EL, Matthysse AG, Teske A (2013a) Why orange Guaymas Basin Beggiatoa (Maribeggiatoa) spp. are orange: single-filament genome-enabled identification of an abundant octaheme cytochrome with hydroxyl-amine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol 79:1183–1190

    PubMed  CAS  PubMed Central  Google Scholar 

  • MacGregor BJ, Biddle JF, Teske A (2013b) Mobile elements in a single-filament orange Guaymas Basin Beggiatoa (“Candidatus Maribeggiatoa”) sp. draft genome: evidence for genetic exchange with cyanobacteria. Appl Environ Microbiol 79:3974–3985

    PubMed  CAS  PubMed Central  Google Scholar 

  • MacGregor BJ, Biddle JF, Harbort C, Matthysse AG, Teske A (2013c) Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (“Candidatus Maribeggiatoa”) sp. filament. Mar Genomics 11:53–65

    Google Scholar 

  • Maier S, Murray RGE (1965) The fine structure of Thioploca ingrica and a comparison with Beggiatoa. Can J Microbiol 11:645–655

    PubMed  CAS  Google Scholar 

  • Maier S (1980) Growth of Thioploca ingrica in a mixed culture system. Ohio J Sci 80:30–32

    Google Scholar 

  • Maier S (1984) Description of Thioploca ingrica sp. nov., nom. rev. Int J Syst Bacteriol 34:344–345

    Google Scholar 

  • Maier S (1989) Genus III. Thioploca Lauterborn 1907. In: Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 2101–2105

    Google Scholar 

  • Maier S, Preissner WC (1979) Occurrence of Thioploca in lake constance and lower saxony, Germany. Microb Ecol 5:117–119

    PubMed  CAS  Google Scholar 

  • Maier S, Gallardo VA (1984a) Nutritional characteristics of two marine thioplocas determined by autoradiography. Arch Microbiol 139:218–220

    CAS  Google Scholar 

  • Maier S, Gallardo VA (1984b) Thioploca araucae sp. nov., and Thioploca chileae sp. nov. Int J Syst Bacteriol 34:414–418

    Google Scholar 

  • Maier S, Völker H, Beese HM, Gallardo VA (1990) The fine structure of Thioploca araucae and Thioploca chileae. Can J Microbiol 36:438–448

    Google Scholar 

  • Mattison RG, Abbiati M, Dando PR, Fitzsimons MF, Pratt SM, Southward AJ, Southward EC (1998) Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy. Microb Ecol 35:58–71

    PubMed  CAS  Google Scholar 

  • McHatton SC, Barry JP, Jannasch HW, Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa. Appl Environ Microbiol 62:954–958

    PubMed  CAS  PubMed Central  Google Scholar 

  • McKay LJ, MacGregor BJ, Biddle JF, Mendlovitz HP, Hoer D, Lipp JS, Lloyd KG, Teske AP (2012) Spatial heterogeneity and underlying geochemistry of phylogenetically diverse orange and white Beggiatoa mats in Guaymas Basin hydrothermal sediments. Deep-Sea Res I 67:21–31

    CAS  Google Scholar 

  • Mendell JE, Clements KD, Choat JH, Angert ER (2008) Extreme polyploidy in a large bacterium. Proc Natl Acad Sci U S A 105:6730–6734

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meyer B, Imhoff JF, Küver J (2007) Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 9:2957–2977

    PubMed  CAS  Google Scholar 

  • Mezzino M, Strohl WR, Larkin JM (1984) Characterization of Beggiatoa alba. Arch Microbiol 137:139–144

    CAS  Google Scholar 

  • Migula W (1894) Über ein neues System der Bakterien. Arbeit aus dem bakteriologischen Institut der technischen Hochschule zu Karlsruhe, vol 1, pp 235–238

    Google Scholar 

  • Minges CG, Titus JA, Strohl WR (1983) Plasmid DNA in colourless filamentous gliding bacteria. Arch Microbiol 134:38–44

    PubMed  CAS  Google Scholar 

  • Mills HJ, Martinez RJ, Story S, Sobecky PA (2004) Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl Environ Microbiol 70(9):5447–5458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mitchell R, Chet I (1975) Bacterial attack of corals in polluted seawater. Mar Biol 2:227–233

    CAS  Google Scholar 

  • Møller MM, Nielsen LP, Jørgensen BB (1985) Oxygen responses and mat formation of Beggiatoa spp. Appl Environ Microbiol 50:373–382

    PubMed  PubMed Central  Google Scholar 

  • Morita RY, Stave PW (1963) Electron micrograph of an ultrathin section of Beggiatoa. J Bacteriol 85:940–942

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mussmann M, Schulz HN, Strotmann B, Kjaer T, Nielsen LP, Rosselló- Mora RA, Amann RI, Jørgensen BB (2003) Phylogeny and distribution of nitrate-storing Beggiatoa spp. in coastal marine sediments. Environ Microbiol 5:523–533

    PubMed  CAS  Google Scholar 

  • Mussmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5:e230. doi:10.1371/journal.pbio.0050230

    PubMed  PubMed Central  Google Scholar 

  • Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–9

    CAS  Google Scholar 

  • Namsaraev BB, Dulov LE, Dubinina GA, Zemskaya TI, Granina LZ, Karabanov EV (1994) Bacterial synthesis and destruction of organic matter in microbial mats of Lake Baikal. Microbiology 63:193–197

    Google Scholar 

  • Neira C, Sellanes J, Soto A, Gutiérrez D, Gallardo VA (2001) Meiofauna and sedimentary organic matter off central Chile: response to changes caused by the 1997–1998 El Niño. Oceanol Acta 24:313–328

    CAS  Google Scholar 

  • Nelson DC (1992) The genus Beggiatoa. In: Balows A, Trueper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3171–3180

    Google Scholar 

  • Nelson DC, Castenholz RW (1981a) Use of reduced sulfur compounds by Beggiatoa sp. J Bacteriol 147:140–154

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson DC, Castenholz RW (1981b) Organic nutrition of Beggiatoa sp. J Bacteriol 147:236–247

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson DC, Castenholz RW (1982) Light responses of Beggiatoa. Arch Microbiol 131:146–155

    Google Scholar 

  • Nelson DC, Waterbury JB, Jannasch HW (1982) Nitrogen-fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch Microbiol 133:172–177

    CAS  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    CAS  Google Scholar 

  • Nelson DC, Revsbech NP, Jørgensen BB (1986a) Microoxic-anoxic niche of Beggiatoa spp.: microelectrode survey of marine and freshwater strains. Appl Environ Microbiol 52:161–168

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson DC, Jørgensen BB, Revsbech NP (1986b) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52:225–233

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nemoto F, Kojima H, Fukui M (2011) Diversity of freshwater Thioploca species and their specific association with filamentous bacteria of the phylum Chloroflexi. Microb Ecol 62:753–764

    PubMed  Google Scholar 

  • Nemoto F, Kojima H, Ohtaka A, Fukui M (2012) Filamentous sulfur-oxidizing bacteria of the genus Thioploca from Lake Tonle Sap in Cambodia. Aquat Microb Ecol 66:295–300

    Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Håkon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    PubMed  CAS  Google Scholar 

  • Nikolaus R, Ammerman JW, MacDonald IR (2003) Distinct pigmentation and trophic modes in Beggiatoa from hydrocarbon seeps in the Gulf of Mexico. Aquat Microb Ecol 32:85–93

    Google Scholar 

  • Nishino M, Fukui M, Nakajima T (1998) Dense mats of Thioploca, gliding filamentous sulfur-oxidizing bacteria in Lake Biwa, central Japan. Water Res 32:953–957

    CAS  Google Scholar 

  • Otte S, Kuenen GJ, Nielsen LP, Paerl HW, Zopfi J, Schulz HN, Teske A, Strotmann B, Gallardo VA, Jørgensen BB (1999) Nitrogen, carbon and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orphan VJ, House CH, Hinrichs K-U, McKeegan KD, DeLong EF (2002) Multiple groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pasteris JD, Freeman JJ, Goffredi SK, Buck K (2001) Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem Geol 180:3–18

    CAS  Google Scholar 

  • Patritskaya VY, MYu G, Muntyan MS, Dubinina GA (2001) Lithoautotrophic growth of the freshwater colorless sulfur bacterium Beggiatoaleptomitiformis’ D-402. Microbiology 70:145–150 (Engl. translation of Mikrobiologiya)

    CAS  Google Scholar 

  • Paull CK, Chanton JP, Neumann AC, Coston JA, Martens CS (1992) Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: examples from the Florida Escarpment. Palaios 7:361–375

    Google Scholar 

  • Pfennig N, Biebl H (1981) The dissimilatory sulfur-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, 1st edn. Springer, Berlin/Heidelberg, pp 941–942

    Google Scholar 

  • Pitts G, Allam AI, Hollis JP (1972) Beggiatoa: occurrence in the rice rhizosphere. Science 178:990–992

    PubMed  CAS  Google Scholar 

  • Polman JK, Larkin JM (1988) Properties of in vivo nitrogenase in Beggiatoa alba. Arch Microbiol 150:126–130

    CAS  Google Scholar 

  • Prange A, Chauvistré R, Modrow H, Hormes J, Trüper HG, Dahl C (2002) Quantitative speciation of sulfur in bacterial sulfur globules: x-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology 148:267–276

    PubMed  CAS  Google Scholar 

  • Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1:341–353

    PubMed  CAS  Google Scholar 

  • Prince RC, Stokley KE, Haith CE, Jannasch HW (1988) The cytochromes of a marine Beggiatoa. Arch Microbiol 150:193–196

    CAS  Google Scholar 

  • Pringsheim EG, Wiessner W (1963) Minimum requirement for heterotrophic growth and reserve substance in Beggiatoa. Nature 197:102

    Google Scholar 

  • Pringsheim EG (1964) Heterotrophism and species concepts in Beggiatoa. Am J Bot 51:898–913

    Google Scholar 

  • Pringsheim EG (1967) Die Mixotrophie von Beggiatoa. Arch Mikrobiol 59:247–254

    PubMed  CAS  Google Scholar 

  • Prokopenko MG, Hammond DE, Berelson WM, Bernhard JM, Stott L, Douglas R (2006) Nitrogen cycling in the sediments of Santa Barbara Basin and the Eastern Subtropical North Pacific: nitrogen isotopes, diagenesis, and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox)—“riding on a glider”. Earth Planet Sci Lett 242:186–204

    CAS  Google Scholar 

  • Prokopenko MG, Sigman DM, Berelson WM, Hammond DE, Barnett B, Chong L, Townsend-Small A (2011) Denitrification in anoxic sediments supported by biological nitrate transport. Geochim Cosmochim Acta 75:7180–7199

    CAS  Google Scholar 

  • Prokopenko MG, Hirst MB, De Brabandere L, Lawrence DJP, Berelson WM, Granger J, Chang BX, Dawson S, Crane EJ III, Chong L, Thamdrup B, Townsend-Small A, Sigman DM (2013) Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia. Nature 500:194–200

    PubMed  CAS  Google Scholar 

  • Reichenbach H, Dworkin M (1981) Introduction to the gliding bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, 1st edn. Springer, Berlin/Heidelberg, pp 315–327

    Google Scholar 

  • Roa R, Gallardo VA, Ernst B, Baltazar M, Cañete JI, Enríquez-Brionnes S (1995) Nursery ground, age structure and abundance of the juvenile squat lobster Pleuroncodes monodon on the continental shelf off central Chile. Mar Ecol Prog Ser 116:47–54

    Google Scholar 

  • Robinow C, Angert ER (1998) Nucleoids and coated vesicles of “Epulopiscium” spp. Arch Microbiol 170:227–253

    PubMed  CAS  Google Scholar 

  • Rosenberg R, Diaz RJ (1993) Sulfur bacteria (Beggiatoa spp.) mats indicate hypoxic conditions in the inner Stockholm archipelago. Ambio 22:32–36

    Google Scholar 

  • Salman V, Amann R, Girnth A-C, Polerecky L, Bailey JV, Høgslund S, Jessen G, Pantoja S, Schulz-Vogt HN (2011) A single-cell sequencing approach to the classification of large, vacuolated sulfur bacteria. Syst Appl Microbiol 34:243–259

    PubMed  CAS  Google Scholar 

  • Salman V, Amann R, Shub DA, Schulz-Vogt HN (2012) Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci USA 109:4203–4208

    PubMed  CAS  PubMed Central  Google Scholar 

  • Salman V, Bailey JV, Teske A (2013) Phylogenetic and morphological complexity of giant sulfur bacteria. Antonie Van Leeuwenhoek 104:169–186

    PubMed  CAS  Google Scholar 

  • Saravanakumar C, Dineshkumar N, Alavandi SV, Salman V, Poornima M, Kalaimani N (2012) Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu along the southeast coast of India. Syst Appl Microbiol 35:396–403

    PubMed  CAS  Google Scholar 

  • Sassen R, MacDonald IR, Requejo AG, Guinasso NL, Kennicutt MC II, Sweet ST, Brooks JM (1994) Organic geochemistry of sediments from chemosynthetic communities, Gulf of Mexico slope. Geo-Mar Lett 14:110–119

    CAS  Google Scholar 

  • Sayama M (2001) Presence of nitrate-accumulating sulfur bacteria and their influence on nitrogen cycling in a shallow coastal marine sediment. Appl Environ Microbiol 67:3481–3487

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sayama N, Risgaard-Petersen N, Nielsen LP, Fossing H, Christensen PB (2005) Impact of bacterial NO3 transport on sediment biogeochemistry. Appl Environ Microbiol 71:7575–7577

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schlösser UG (1982) Sammlung von Algenkulturen. Ber Dtsch Bot Ges 95:181–276

    Google Scholar 

  • Schmaljohann R, Drews M, Walter S, Linke P, Von Rad U, Imhoff JF (2001) Oxygen minimum zone sediments in the northeastern Arabian Sea off Pakistan: a habitat for the bacterium Thioploca. Mar Ecol Prog Ser 211:27–42

    CAS  Google Scholar 

  • Schmidt TM, Vinci VA, Strohl WR (1986) Protein synthesis by Beggiatoa alba B18LD in the presence and absence of sulfide. Arch Microbiol 144:158–162

    CAS  Google Scholar 

  • Schmidt TM, Arieli B, Cohen Y, Padan E, Strohl WR (1987) Sulfur metabolism of Beggiatoa alba. J Bacteriol 169:5466–5472

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schubert CJ, Ferdelman TG, Strotmann B (2000) Organic matter composition and sulfate reduction rates in sediments off Chile. Org Geochem 31:351–361

    CAS  Google Scholar 

  • Schulz HN (2006) The genus Thiomargarita. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 6, 3rd edn. Springer, New York, pp 1156–1163

    Google Scholar 

  • Schulz HN, de Beer D (2002) Uptake rates of oxygen and sulfide measured with individual Thiomargarita namibiensis cells by using microelectrodes. Appl Environ Microbiol 68:5746–5749

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulz HN, Jørgensen BB, Fossing HA, Ramsing NB (1996) Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp., off the coast of Chile. Appl Environ Microbiol 62:1855–1862

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schulz HN, Strotmann B, Gallardo VA, Jørgensen BB (2000) Population study of the filamentous sulfur bacteria Thioploca spp. off the Bay of Concepción, Chile. Mar Ecol Prog Ser 200:117–126

    CAS  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Marine MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    PubMed  CAS  Google Scholar 

  • Schulz HN, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137

    PubMed  CAS  Google Scholar 

  • Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418

    PubMed  CAS  Google Scholar 

  • Schwedt A, Kreutzmann A-C, Polerecky L, Schulz-Vogt HN (2012) Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain. Front Microbiol 2:276

    PubMed  PubMed Central  Google Scholar 

  • Scotten HL, Stokes JL (1962) Isolation and properties of Beggiatoa. Arch Mikrobiol 42:353–368

    Google Scholar 

  • Sekar R, Mills DK, Remily ER, Voss JD, Richardson LL (2006) Microbial communities in the surface mucopolysaccharide layer and the black band microbial mat of black band-diseased Siderastrea siderea. Appl Environ Microbiol 72:5963–5973

    PubMed  CAS  PubMed Central  Google Scholar 

  • Skerman VBD, Dementjeva G, Carey BJ (1957) Intracellular deposition of sulfur by Spaerotilus natans. J Bacteriol 73:507–512

    Google Scholar 

  • Smith CR, Kukert H, Wheatcroft RA, Jumars PA, Deming JW (1989) Vent fauna on whale remains. Nature 341:27–28

    Google Scholar 

  • Stahl DA, Lance DJ, Olsen GJ, Heller DJ, Schmidt TM, Pace NR (1987) Phylogenetic analysis of certain sulfide-oxidizing and related morphologically conspicuous bacteria by 5S ribosomal ribonucleic acid sequences. Int J Syst Bacteriol 37:116–122

    CAS  Google Scholar 

  • Stierl M, Stumpf P, Udwari D, Güta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Örtner TG, Nagel G, Hegemann P (2011) Light modulation of cellular camp by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:1181–1188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strohl WR, Schmidt TM, Lawry NH, Mezzino MJ, Larkin JM (1986) Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiformis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Int J Syst Bacteriol 36:302–313

    CAS  Google Scholar 

  • Strohl WR, Larkin JM (1978a) Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments. Appl Environ Microbiol 36:755–770

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strohl WR, Larkin JM (1978b) Cell division and trichome breakage in Beggiatoa. Curr Microbiol 1:151–155

    PubMed  CAS  Google Scholar 

  • Strohl WR, Howard KS, Larkin JM (1982) Ultrastructure of Beggiatoa alba strain B15LD. J Gen Microbiol 128:73–84

    Google Scholar 

  • Strohl WR, Cannon GC, Shively JM, Gude H, Hook LA, Lane CM, Larkin JM (1981a) Heterotrophic carbon metabolism by Beggiatoa alba. J Bacteriol 148:572–583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Strohl WR, Geffers I, Larkin JM (1981b) Structure of the sulfur inclusion envelopes from four Beggiatoas. Curr Microbiol 6:75–79

    Google Scholar 

  • Strohl WR, Schmidt TM (1984) Mixotrophy of colorless, sulfide-oxidizing gliding bacteria Beggiatoa and Thiothrix. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio University Press, Columbus, pp 79–95

    Google Scholar 

  • Strohl WR (1989) Family I. Beggiatoaceae. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3, 1st edn. Williams & Wilkins, Baltimore, pp 2089–2106

    Google Scholar 

  • Sweerts JPRA, Beer DD, Nielsen LP, Verdouw H, Heuvel JCV, Cohen Y, Cappenberg TE (1990) Denitrification by sulfur oxidizing Beggiatoa app. mats on freshwater sediments. Nature 334:762–763

    Google Scholar 

  • Teske A, Ramsing NB, Küver J, Fossing H (1995) Phylogeny of Thioploca and related filamentous sulfide-oxidizing bacteria. Syst Appl Microbiol 18:517–526

    Google Scholar 

  • Teske A, Sogin ML, Nielsen LP, Jannasch HW (1999) Phylogenetic position of a large marine Beggiatoa. Syst Appl Microbiol 22:39–44

    PubMed  CAS  Google Scholar 

  • Teske A, Stahl DA (2002) Microbial mats and biofilms: evolution, structure and function of fixed microbial communities. In: Staley JT, Schleifer K-H (eds) Biodiversity of microbial life: foundation of earth’s biosphere. Wiley-Liss, New York, pp 49–100

    Google Scholar 

  • Teske A, Nelson DC (2006) The genera Beggiatoa and Thioploca. In: Dworkin M, Schleifer K-H (eds) The prokaryotes, vol 6, 3rd edn. Springer, New York, pp 784–810

    Google Scholar 

  • Teske A, Jørgensen BB, Gallardo VA (2009) Filamentous bacteria inhabiting the sheaths of marine Thioploca spp. on the Chilean continental shelf. FEMS Microbiol Ecol 68:164–172

    PubMed  CAS  Google Scholar 

  • Thamdrup B, Canfield DE (1996) Pathways of carbon oxidation in continental margin sediments off central Chile. Limnol Oceanogr 41:1629–1650

    PubMed  CAS  Google Scholar 

  • Trevisan V (1842) Prospetto della flora Euganea. Coi Tipi del Seminario, Padua, pp 1–68

    Google Scholar 

  • Uphof JCT (1927) Zur Ökologie der Schwefelbakterien in den Schwefelquellen Mittelfloridas. Arch Hydrobiol 18:71–84

    Google Scholar 

  • Vallius H (2006) Permanent seafloor anoxia in coastal basins of the northwestern Gulf of Finland, Baltic Sea. Ambio 35:105–108

    PubMed  CAS  Google Scholar 

  • Van Gaever S, Raes M, Pasotti F, Vanreusel A (2010) Spatial scale and habitat-dependent diversity patterns in nematode communities in three seepage related sites along the Norwegian Sea margin. Mar Biol 31:66–77

    Google Scholar 

  • Van Niel CB (1948) Family A. Achromatiaceae Massart. In: Breed RS, Murray EGD, Hitchens AP (eds) Bergey’s manual of determinative bacteriology, 6th edn. Williams and Wilkins, Baltimore, pp 997–999

    Google Scholar 

  • Vargas A, Strohl WR (1985a) Ammonia assimilation and metabolism by Beggiatoa alba. Arch Microbiol 142:275–278

    CAS  Google Scholar 

  • Vargas A, Strohl WR (1985b) Utilization of nitrate by Beggiatoa alba. Arch Microbiol 142:279–284

    CAS  Google Scholar 

  • Vaucher JP (1803) Histoire des conferves d’eau douce, contenant leurs différents modes de reproduction, et la description de leurs principales espèces. Paschoud, Geneva

    Google Scholar 

  • Weeks SJ, Currie B, Bakun A (2002) Massive emissions of toxic gas in the Atlantic. Nature 415:493–494

    PubMed  CAS  Google Scholar 

  • Weeks SJ, Currie B, Bakun A, Peard KR (2004) Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery. Deep-Sea Res I 51:153–172

    CAS  Google Scholar 

  • Williams LA, Reimers C (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: preliminary report. Geology 11:267–269

    Google Scholar 

  • Williams TM, Unz RF (1985) Filamentous sulfur bacteria of activated sludge: characterization of Thiothrix, Beggiatoa, and Eikelboom Type 021N strains. Appl Environ Microbiol 49:887–898

    PubMed  CAS  PubMed Central  Google Scholar 

  • Winogradsky S (1887) Über Schwefelbakterien. Botanische Zeitung 45:489–507, 529–539, 545–559, 569–575, 585–594, 606–610

    Google Scholar 

  • Wirsen CO, Jannasch HW, Molyneaux SJ (1992) Non-symbiotic microbiota as associated with chemosynthetic communities. In: MacDonald IR (ed) Chemosynthetic ecosystems study, vol II: technical report. Prepared by Geochemical and Environmental Research Group. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, pp 6.1–6.13

    Google Scholar 

  • Wislouch SM (1912) Thioploca ingrica nov. sp. Ber Dtsch Bot Ges 30:470–474

    Google Scholar 

  • Yekta SS, Rahm L (2011) A model study of the effects of sulfide-oxidizing bacteria (Beggiatoa spp.) on phosphorus retention processes in hypoxic sediments: implications for phosphorus management in the Baltic Sea. Boreal Environ Res 16:167–184

    CAS  Google Scholar 

  • Zemskaya TI, Namsaraev BB, Dul’tseva NM, Khanaeva TA, Golobokova LP, Dubinina GA, Dulov LE, Wada E (2001) Ecophysiological characteristics of the mat-forming bacterium Thioploca in bottom sediments of the Frolikha Bay, northern Baikal. Microbiology 70:335–341 (Engl. translation of Mikrobiologiya)

    CAS  Google Scholar 

  • Zemskaya TI, Chernitsyna SM, Dul’tseva NM, Sergeeva VN, Pogodaeva TV, Namsaraev BB (2009) Colorless sulfur bacteria Thioploca from different sites in Lake Baikal. Microbiology 78:117–124 (Engl. translation of Mikrobiologiya)

    CAS  Google Scholar 

  • Zhang CL, Huang Z, Cantu J, Pancost RD, Brigmon RL, Lyons TW, Sassen R (2005) Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71:2106–2112

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zopfi J, Kjaer T, Nielsen LP, Jørgensen BB (2001) Ecology of Thioploca spp.: nitrate and sulfur storage in relation to chemical microgradients and influence of Thioploca spp. on the sedimentary nitrogen cycle. Appl Environ Microbiol 67:5530–5537

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zopfi J, Böttcher ME, Jørgensen BB (2008) Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling areas off central Chile. Geochim Cosmochim Acta 72:827–843

    CAS  Google Scholar 

Download references

Acknowledgments

The authors of this chapter were supported by NSF (OCE 0647633; MO/MIP 0801741) and by the Deutsche Forschungsgemeinschaft (SA 250/1-1). We thank Jake Bailey, Manabu Fukui, Jan Küver, Ian McDonald, Stefanie Meyer, Marc Mussmann, and Thomas R. Neu for generously providing illustrations. We thank Heide Schulz-Vogt and Victor A. Gallardo for careful edits and suggestions that substantially improved this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Teske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Teske, A., Salman, V. (2014). The Family Beggiatoaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38922-1_290

Download citation

Publish with us

Policies and ethics