Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

Abstract

Promises are a standard way to formalize partial algorithms; and advice quantifies nonuniformity. For decision problems, the latter is captured in common complexity classes such as \(\mathcal{P}/\operatorname{poly}\), that is, with advice growing in size with that of the input. We advertise constant-size advice and explore its theoretical impact on the complexity of classification problems – a natural generalization of promise problems – and on real functions and operators. Specifically we exhibit problems that, without any advice, are decidable/computable but of high complexity while, with (each increase in the permitted size of) advice, (gradually) drop down to polynomial-time.

Supported in part by the Marie Curie International Research Staff Exchange Scheme Fellowship 294962 within the 7th European Community Framework Programme and by the German Research Foundation (DFG) with project Zi 1009/4-1. We acknowledge seminal discussions with Vassilis Gregoriades, Thorsten Kräling, and Hermann K.-G. Walter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M.: The Isomorphism Conjecture for \(\mathcal{NP}\). In: Cooper, S.B., Sorbi, A. (eds.) Computability in Context, pp. 19–48. World Scientific (2009)

    Google Scholar 

  2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Springer (1997)

    Google Scholar 

  3. Beyersdorff, O., Köbler, J., Müller, S.: Proof Systems that Take Advice. Proof Systems that Take Advice 209(3), 320–332 (2011)

    MATH  Google Scholar 

  4. Brattka, V.: Recursive Characterization of Computable Real-Valued Functions and Relations. Theoretical Computer Science 162, 45–77 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brattka, V.: Computable Invariance. Theoretical Computer Science 210, 3–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braverman, M.: On the Complexity of Real Functions. In: Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 155–164

    Google Scholar 

  7. Braverman, M., Cook, S.A.: Computing over the Reals: Foundations for Scientific Computing. Notices of the Americal Mathematical Society 53(3), 318–329 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Brattka, V., Pauly, A.M.: Computation with Advice. In: Electronic Proceedings in Theoretical Computer Science, vol. 24 (June 2010)

    Google Scholar 

  9. Brandt, U., Walter, H.K.-G.: Cohesiveness in Promise Problems. Presented at the 64th GI Workshop on Algorithms and Complexity (2012)

    Google Scholar 

  10. Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with Applications to Public-Key Cryptography. Inform. and Control 61, 159–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Even, S., Selman, A.L., Yacobi, Y.: Hard-Core Theorems for Complexity Classes. Journal of the ACM 32(1), 205–217 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldreich, O.: On Promise Problems: A Survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Shimon Even Festschrift. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006)

    Google Scholar 

  13. Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press (2008)

    Google Scholar 

  14. Grzegorczyk, A.: On the Definitions of Computable Real Continuous Functions. Fundamenta Mathematicae 44, 61–77 (1957)

    MathSciNet  MATH  Google Scholar 

  15. Hemaspaandra, L.A., Torenvliet, L.: Theory of Semi-Feasible Algorithms. Springer Monographs in Theoretical Computer Science (2003)

    Google Scholar 

  16. Hertling, P.: Topological Complexity of Zero Finding with Algebraic Operations. Journal of Complexity 18(4), 912–942 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawamura, A.: Lipschitz Continuous Ordinary Differential Equations are Polynomial-Space Complete. Computational Complexity 19(2), 305–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawamura, A., Cook, S.A.: Complexity Theory for Operators in Analysis. In: Proc. 42nd Ann. ACM Symp. on Theory of Computing (STOC 2010), pp. 495–502 (2010)

    Google Scholar 

  19. Kawamura, A., Cook, S.A.: Complexity Theory for Operators in Analysis. ACM Transactions in Computation Theory 4(2), article 5 (2012)

    Google Scholar 

  20. Ko, K.-I., Friedman, H.: Computational Complexity of Real Functions. Theoretical Computer Science 20, 323–352 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser (1991)

    Google Scholar 

  22. Ko, K.-I.: Polynomial-Time Computability in Analysis. In: Ershov, Y.L., et al. (eds.) Handbook of Recursive Mathematics, vol. 2, pp. 1271–1317 (1998)

    Google Scholar 

  23. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational Complexity of Smooth Differential Equations. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 578–589. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Kreisel, G., Macintyre, A.: Constructive Logic versus Algebraization I. In: Troelstra, A.S., van Dalen, D. (eds.) Proc. L.E.J. Brouwer Centenary Symposium, pp. 217–260. North-Holland (1982)

    Google Scholar 

  25. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Springer (1997)

    Google Scholar 

  26. Luckhardt, H.: A Fundamental Effect in Computations on Real Numbers. Theoretical Computer Science 5, 321–324 (1977)

    Article  MathSciNet  Google Scholar 

  27. Lynch, N.: On Reducibility to Complex or Sparse Sets. Journal of the ACM 22(3), 341–345 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Michaux, C.: \(\mathcal{P}\neq\mathcal{NP}\) over the Nonstandard Reals Implies \(\mathcal{P}\neq\mathcal{NP}\) over ℝ. Theoretical Computer Science 133, 95–104 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller, N.T.: Subpolynomial Complexity Classes of Real Functions and Real Numbers. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 284–293. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  30. Müller, N.T.: Uniform Computational Complexity of Taylor Series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  31. Müller, N.T.: Constructive Aspects of Analytic Functions. In: Proc. Workshop on Computability and Complexity in Analysis (CCA), InformatikBerichte FernUniversität Hagen, vol. 190, pp. 105–114 (1995)

    Google Scholar 

  32. Müller, N.T.: The iRRAM: Exact Arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Müller, N.T., Moiske, B.: Solving Initial Value Problems in Polynomial Time. In: Proc. 22nd JAIIO-PANEL, pp. 283–293 (1993)

    Google Scholar 

  34. Müller, N.T., Zhao, X.: Complexity of Operators on Compact Sets. Electronic Notes Theoretical Computer Science 202, 101–119 (2008)

    Article  Google Scholar 

  35. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer (1989)

    Google Scholar 

  36. Specker, E.: The Fundamental Theorem of Algebra in Recursive Analysis. In: Dejon, B., Henrici, P. (eds.) Constructive Aspects of the Fundamental Theorem of Algebra, pp. 321–329. Wiley-Interscience (1969)

    Google Scholar 

  37. Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press (1988)

    Google Scholar 

  38. Weihrauch, K.: Computable Analysis. Springer (2000)

    Google Scholar 

  39. Ziegler, M., Brattka, V.: Computability in Linear Algebra. Theoretical Computer Science 326, 187–211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ziegler, M.: Real Computation with Least Discrete Advice: A Complexity Theory of Nonuniform Computability. Annals of Pure and Applied Logic 163(8), 1108–1113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambos-Spies, K., Brandt, U., Ziegler, M. (2013). Real Benefit of Promises and Advice. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics