Skip to main content

Irrationality Is Needed to Compute with Signal Machines with Only Three Speeds

  • Conference paper
The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

Abstract

Space-time diagrams of signal machines on finite configurations are composed of interconnected line segments in the Euclidean plane. As the system runs, a network emerges. If segments extend only in one or two directions, the dynamics is finite and simplistic. With four directions, it is known that fractal generation, accumulation and any Turing computation are possible.

This communication deals with the three directions/speeds case. If there is no irrational ratio (between initial distances between signals or between speeds) then the network follows a mesh preventing accumulation and forcing a cyclic behavior. With an irrational ratio (here, the Golden ratio) between initial distances, it becomes possible to provoke an accumulation that generates infinitely many interacting signals in a bounded portion of the Euclidean plane. This behavior is then controlled and used in order to simulate a Turing machine and generate a 25-state 3-speed Turing-universal signal machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, F., Chapelle, M., Durand-Lose, J., Levorato, V., Senot, M.: Abstract geometrical computation 8: Small machines, accumulations & rationality. Draft (2013)

    Google Scholar 

  2. Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 143–153. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Cook, M.: Universality in elementary cellular automata. Complex Systems 15, 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Duchier, D., Durand-Lose, J., Senot, M.: Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 435–447. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Durand-Lose, J.: Calculer géométriquement sur le plan – machines à signaux. Habilitation à Diriger des Recherches, École Doctorale STIC, Université de Nice-Sophia Antipolis (2003) (in French)

    Google Scholar 

  6. Durand-Lose, J.: Abstract geometrical computation: Turing-computing ability and undecidability. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 106–116. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Durand-Lose, J.: Forcasting black holes in abstract geometrical computation is highly unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Durand-Lose, J.: The signal point of view: from cellular automata to signal machines. In: Durand, B. (ed.) Journées Automates Cellulaires (JAC 2008), pp. 238–249 (2008)

    Google Scholar 

  9. Durand-Lose, J.: Abstract geometrical computation 3: Black holes for classical and analog computing. Nat. Comput. 8(3), 455–472 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durand-Lose, J.: Abstract geometrical computation 4: small Turing universal signal machines. Theoret. Comp. Sci. 412, 57–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durand-Lose, J.: Abstract geometrical computation 7: Geometrical accumulations and computably enumerable real numbers. Nat. Comput. 11(4), 609–622 (2012), Special issue on Unconv. Comp. 2011

    Google Scholar 

  12. Huckenbeck, U.: Euclidian geometry in terms of automata theory. Theoret. Comp. Sci. 68(1), 71–87 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacopini, G., Sontacchi, G.: Reversible parallel computation: an evolving space-model. Theoret. Comp. Sci. 73(1), 1–46 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Margenstern, M.: Frontier between decidability and undecidability: A survey. Theor. Comput. Sci. 231(2), 217–251 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mazoyer, J.: Computations on one dimensional cellular automata. Ann. Math. Artif. Intell. 16, 285–309 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret. Comp. Sci. 217(1), 53–80 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mycka, J., Coelho, F., Costa, J.F.: The euclid abstract machine: Trisection of the angle and the halting problem. In: Calude, C.S., Dinneen, M.J., Păun, G., Rozenberg, G., Stepney, S. (eds.) UC 2006. LNCS, vol. 4135, pp. 195–206. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Ollinger, N., Richard, G.: Four states are enough? Theoret. Comp. Sci. 412(1-2), 22–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rogozhin, Y.V.: Small universal Turing machines. Theoret. Comp. Sci. 168(2), 215–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Woods, D., Neary, T.: The complexity of small universal Turing machines: A survey. Theoret. Comp. Sci. 410(4-5), 443–450 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand-Lose, J. (2013). Irrationality Is Needed to Compute with Signal Machines with Only Three Speeds. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics