Skip to main content

Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems

  • Conference paper
The Nature of Computation. Logic, Algorithms, Applications (CiE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7921))

Included in the following conference series:

Abstract

Nonlinear dynamical systems abound as models of natural phenomena. They are often characterized by highly unpredictable behaviour which is hard to analyze as it occurs, for example, in chaotic systems. A basic problem is to understand what kind of information we can realistically expect to extract from those systems, especially information concerning their long-term evolution. Here we review a few recent results which look at this problem from a computational perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer (2001)

    Google Scholar 

  2. Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1889)

    Google Scholar 

  3. Hadamard, J.: Les surfaces à courbures opposées et leurs lignes géodésiques. J. Math. Pures et Appl. 4, 27–73 (1898)

    Google Scholar 

  4. Birkhoff, G.D.: Dynamical Systems. American Mathematical Society Colloquium Publications, vol. 9. American Mathematical Society (1927)

    Google Scholar 

  5. Kolmogorov, A.N.: Preservation of conditionally periodic movements with small change in the hamiltonian function. Doklady Akademii Nauk SSSR 98, 527–530 (1954)

    MathSciNet  MATH  Google Scholar 

  6. Cartwright, M.L., Littlewood, J.E.: On non-linear differential equations of the second order, i: The equation y  + k(1 − y 2)y  + y = bλk cos(λt + a), k large. J. Lond. Math. Soc. 20(3), 180–189 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  7. Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  9. Smale, S.: Mathematical problems for the next century. Math. Intelligencer 20, 7–15 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tucker, W.: The Lorenz attractor exists. In: Acad, C.R. (ed.) Sci. Paris. Series I - Mathematics, vol. 328, pp. 1197–1202 (1999)

    Google Scholar 

  11. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press (1974)

    Google Scholar 

  12. Sontag, E.D.: Mathematical Control Theory, 2nd edn. Springer (1998)

    Google Scholar 

  13. Hubbard, J.H., West, B.H.: Differential Equations: A Dynamical Systems Approach — Higher-Dimensional Systems. Springer (1995)

    Google Scholar 

  14. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press (2004)

    Google Scholar 

  15. Branicky, M.S.: Universal computation and other capabilities of hybrid and continuous dynamical systems. Theoret. Comput. Sci. 138(1), 67–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Asarin, E., Maler, O.: Achilles and the tortoise climbing up the arithmetical hierarchy. J. Comput. System Sci. 57(3), 389–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bournez, O.: Achilles and the Tortoise climbing up the hyper-arithmetical hierarchy. Theoret. Comput. Sci. 210(1), 21–71 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can simulate universal Turing machines. Theoret. Comput. Sci. 210(1), 217–223 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Odifreddi, P.: Classical Recursion Theory, vol. 2. Elsevier (1999)

    Google Scholar 

  20. Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability, and hyperbolic systems. Appl. Math. Comput. 219(6), 3039–3054 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ko, K.I.: Computational Complexity of Real Functions. Birkhäuser (1991)

    Google Scholar 

  22. Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions. Internat. J. Found. Comput. Sci. 7(2), 151–160 (1996)

    Article  MATH  Google Scholar 

  23. Graça, D., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Amer. Math. Soc. 361(6), 2913–2927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rettinger, R., Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. Journal of Universal Computer Science 15(6), 1301–1316 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions — the ten thousand monkeys approach. Journal of Universal Computer Science 15(6), 1162–1185 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser (1982)

    Google Scholar 

  27. Weihrauch, K.: Computable Analysis: an Introduction. Springer (2000)

    Google Scholar 

  28. Graça, D.S., Zhong, N.: Computability in planar dynamical systems. Natural Computing 10(4), 1295–1312 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhong, N.: Computational unsolvability of domain of attractions of nonlinear systems. Proc. Amer. Math. Soc. 137, 2773–2783 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Graça, D.S.: Some recent developments on Shannon’s General Purpose Analog Computer. Math. Log. Quart. 50(4-5), 473–485 (2004)

    MATH  Google Scholar 

  31. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential equations. Adv. Appl. Math. 40(3), 330–349 (2008)

    Article  MATH  Google Scholar 

  32. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving polynomial initial value problems. In: 37th International Symposium on Symbolic and Algebraic Computation (ISSAC 2012) (2012)

    Google Scholar 

  33. Smith, W.D.: Church’s thesis meets the n-body problem. Appl. Math. Comput. 178(1), 154–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Müller, N., Moiske, B.: Solving initial value problems in polynomial time. Proc. 22 JAIIO - PANEL 1993, Part 2, 283–293 (1993)

    Google Scholar 

  35. Werschulz, A.G.: Computational complexity of one-step methods for systems of differential equations. Math. Comput. 34, 155–174 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Corless, R.M.: A new view of the computational complexity of IVP for ODE. Numer. Algorithms 31, 115–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  38. Müller, N.T.: Uniform computational complexity of taylor series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  39. Müller, N.T., Korovina, M.V.: Making big steps in trajectories. Electr. Proc. Theoret. Comput. Sci. 24, 106–119 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournez, O., Graça, D.S., Pouly, A., Zhong, N. (2013). Computability and Computational Complexity of the Evolution of Nonlinear Dynamical Systems. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds) The Nature of Computation. Logic, Algorithms, Applications. CiE 2013. Lecture Notes in Computer Science, vol 7921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39053-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39053-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39052-4

  • Online ISBN: 978-3-642-39053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics