Skip to main content

Identifying the Optimal Level of Parallelism in Transactional Memory Applications

  • Conference paper
Networked Systems (NETYS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7853))

Included in the following conference series:

Abstract

In this paper we investigate the issue of automatically identifying the “natural” degree of parallelism of an application using software transactional memory (STM), i.e., the workload-specific multiprogramming level that maximizes application’s performance. We discuss the importance of adapting the concurrency level to the workload in two different scenarios, a shared-memory and a distributed STM infrastructure. We propose and evaluate two alternative self-tuning methodologies, explicitly tailored for the considered scenarios. In shared-memory STM, we show that lightweight, black-box approaches relying solely on on-line exploration can be extremely effective. For distributed STMs, we introduce a novel hybrid approach that combines model-driven performance forecasting techniques and on-line exploration in order to take the best of the two techniques, namely enhancing robustness despite model’s inaccuracies, and maximizing convergence speed towards optimum solutions.

This work has been partially supported by the projects “Cloud-TM” and “ParaDIME” (co-financed by the European Commission through the contract no. 257784 and 318693), project specSTM (PTDC/EIA-EIA/122785/2010), the COST Action Euro-TM (IC1001) and by FCT (INESC-ID multiannual funding) through the PEst-OE/EEI/LA0021/2011 Program Funds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. In: Proc. of ISCA (1993)

    Google Scholar 

  2. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edn. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publisher (2010)

    Google Scholar 

  3. Reimer, N., Haenssgen, S., Tichy, W.F.: Dynamically adapting the degree of parallelism with reflexive programs. In: Saad, Y., Yang, T., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1996. LNCS, vol. 1117, Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  4. Heiss, H.U., Wagner, R.: Adaptive load control in transaction processing systems. In: Proc. of VLDB (1991)

    Google Scholar 

  5. Schroeder, B., Harchol-Balter, M., Iyengar, A., Nahum, E., Wierman, A.: How to determine a good multi-programming level for external scheduling. In: Proc. of ICDE (2006)

    Google Scholar 

  6. Abouzour, M., Salem, K., Bumbulis, P.: Automatic tuning of the multiprogramming level in Sybase SQL Anywhere. In: Proc. of ICDE Workshops (2010)

    Google Scholar 

  7. Yoo, R.M., Lee, H.H.S.: Adaptive transaction scheduling for transactional memory systems. In: Proc. of SPAA (2008)

    Google Scholar 

  8. Mohammad, A., Mikel, L., Christos, K., Kim, J., Chris, K., Ian, W.: Robust adaptation to available parallelism in transactional memory applications. HIPEAC Journal (2008)

    Google Scholar 

  9. Ghanbari, S., Soundararajan, G., Chen, J., Amza, C.: Adaptive learning of metric correlations for temperature-aware database provisioning. In: Proc. of ICAC (2007)

    Google Scholar 

  10. Zhang, Q., Cherkasova, L., Smirni, E.: A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In: Proc. of ICAC (2007)

    Google Scholar 

  11. di Sanzo, P., Ciciani, B., Quaglia, F., Romano, P.: A performance model of multi-version concurrency control. In: Proc. of MASCOTS (2008)

    Google Scholar 

  12. Heindl, A., Pokam, G., Adl-Tabatabai, A.R.: An analytic model of optimistic software transactional memory. In: Proc. of ISPASS (2009)

    Google Scholar 

  13. Dragojevic, A., Guerraoui, R.: Predicting the scalability of an stm: A pragmatic approach (2010)

    Google Scholar 

  14. Rughetti, D., Di Sanzo, P., Ciciani, B., Quaglia, F.: Machine learning-based self-adjusting concurrency in software transactional memory systems. In: Proc. of MASCOTS (2012)

    Google Scholar 

  15. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applications for multi-processing. In: Proc. of IISWC (2008)

    Google Scholar 

  16. Schenker, J.: Optimistic Synchronization and the Natural Degree of Parallelism of Concurrent Applications — MSc Thesis (June 2012)

    Google Scholar 

  17. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2stm: Dependable distributed software transactional memory. In: Proc. of PRDC (2009)

    Google Scholar 

  18. Narasimha Raghavan, R.V.: Balancing the communication load of state transfer in replicated systems. In: Proc. of SRDS (2011)

    Google Scholar 

  19. Jiménez-Peris, R., Patiño-Martínez, M., Alonso, G.: Non-intrusive, parallel recovery of replicated data. In: Proc. of SRDS (2002)

    Google Scholar 

  20. Elnikety, S., Dropsho, S., Cecchet, E., Zwaenepoel, W.: Predicting replicated database scalability from standalone database profiling. In: Proc. of EuroSys (2009)

    Google Scholar 

  21. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional auto scaler: elastic scaling of in-memory transactional data grids. In: Proc. of ICAC (2012)

    Google Scholar 

  22. Singh, R., Sharma, U., Cecchet, E., Shenoy, P.: Autonomic mix-aware provisioning for non-stationary data center workloads. In: Proc. of ICAC (2010)

    Google Scholar 

  23. Francesco, M., Manik, S.: Infinispan Data Grid Platform. Packt Publishing (2012)

    Google Scholar 

  24. Red Hat/JBoss: JBoss Infinispan (2011), http://www.jboss.org/infinispan

  25. TPC Council: TPC-C Benchmark (2011), http://www.tpc.org/tpcc

  26. Yu, P.S., Dias, D.M., Lavenberg, S.S.: On the analytical modeling of database concurrency control. ACM Journal (1993)

    Google Scholar 

  27. Quinlan, J.R.: Rulequest Cubist, http://www.rulequest.com/cubist-info.html

  28. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc. (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Didona, D., Felber, P., Harmanci, D., Romano, P., Schenker, J. (2013). Identifying the Optimal Level of Parallelism in Transactional Memory Applications. In: Gramoli, V., Guerraoui, R. (eds) Networked Systems. NETYS 2013. Lecture Notes in Computer Science, vol 7853. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40148-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40148-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40147-3

  • Online ISBN: 978-3-642-40148-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics