Skip to main content

Photonic Neuromorphic Signal Processing and Computing

  • Chapter
  • First Online:
Nanophotonic Information Physics

Abstract

There has been a recent explosion of interest in spiking neural networks (SNNs), which code information as spikes or events in time. Spike encoding is widely accepted as the information medium underlying the brain, but it has also inspired a new generation of neuromorphic hardware. Although electronics can match biological time scales and exceed them, they eventually reach a bandwidth fan-in trade-off. An alternative platform is photonics, which could process highly interactive information at speeds that electronics could never reach. Correspondingly, processing techniques inspired by biology could compensate for many of the shortcomings that bar digital photonic computing from feasibility, including high defect rates and signal control problems. We summarize properties of photonic spike processing and initial experiments with discrete components. A technique for mapping this paradigm to scalable, integrated laser devices is explored and simulated in small networks. This approach promises to wed the advantageous aspects of both photonic physics and unconventional computing systems. Further development could allow for fully scalable photonic networks that would open up a new domain of ultrafast, robust, and adaptive processing. Applications of this technology ranging from nanosecond response control systems to fast cognitive radio could potentially revitalize specialized photonic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since \(\omega _j\) can either be positive or negative, both, excitation and inhibition can be implemented.

  2. 2.

    We absorb the attenuation or amplification the pulse experiences en route to its destination along with the responsivity of the perturbation to the incident pulse into a single weight parameter \(W_{ij}\).

References

  1. R. Sarpeshkar, Neural Comput. 10(7), 1601 (1998)

    Article  Google Scholar 

  2. C. Koch, Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience) (Oxford University Press, 1998)

    Google Scholar 

  3. P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, D. Modha, in Custom Integrated Circuits Conference (CICC). IEEE 2011, 1–4 (2011)

    Google Scholar 

  4. J. Seo, B. Brezzo, Y. Liu, B. Parker, S. Esser, R. Montoye, B. Rajendran, J. Tierno, L. Chang, D. Modha, et al., in Custom Integrated Circuits Conference (CICC), (IEEE, 2011), pp. 1–4

    Google Scholar 

  5. K. Likharev, A. Mayr, I. Muckra, Ö. Türel, Ann. N. Y. Acad. Sci. 1006(1), 146 (2003)

    Article  ADS  Google Scholar 

  6. G. Snider, Nanotechnology 18(36), 365202 (2007)

    Article  Google Scholar 

  7. Y. Abu-Mostafa, D. Psaltis, Sci. Am. 256(3), 88 (1987)

    Article  Google Scholar 

  8. S. Jutamulia, F. Yu, Opt. Laser Technol. 28(2), 59 (1996)

    Article  ADS  Google Scholar 

  9. M. Hill, E. Frietman, H. de Waardt, G. Khoe, H. Dorren, IEEE Trans. Neural Netw. 13(6), 1504 (2002)

    Article  Google Scholar 

  10. S. Thorpe, A. Delorme, R. Van Rullen et al., Neural Netw. 14(6–7), 715 (2001)

    Article  Google Scholar 

  11. W. Maass, Neural Netw. 10(9), 1659 (1997)

    Article  Google Scholar 

  12. D. Tal, E. Schwartz, Neural Comput. 9(2), 305 (1997)

    Article  MATH  Google Scholar 

  13. B. Lindner, L. Schimansky-Geier, A. Longtin, Phys. Rev. E 66(3), 031916 (2002)

    Google Scholar 

  14. Y. Sakai, S. Funahashi, S. Shinomoto et al., Neural Netw. Official J. Int. Neural Netw. Soc. 12(7–8), 1181 (1999)

    Article  Google Scholar 

  15. W. Maass, C.M. Bishop (eds.), Pulsed neural networks (MIT Press, Cambridge, MA, 1999)

    Google Scholar 

  16. D. Rosenbluth, K. Kravtsov, M.P. Fok, P.R. Prucnal, Opt. Exp. 17(25), 22767 (2009)

    Article  ADS  Google Scholar 

  17. K. Kravtsov, M.P. Fok, D. Rosenbluth, P.R. Prucnal, Opt. Exp. 19(3), 2133 (2011)

    Article  ADS  Google Scholar 

  18. M.P. Fok, H. Deming, M. Nahmias, N. Rafidi, D. Rosenbluth, A. Tait, Y. Tian, P.R. Prucnal, Opt. Lett. 36(1), 19 (2011)

    Article  ADS  Google Scholar 

  19. Y. Tian, M. Fok, P. Prucnal, in 2011 Conference on IEEE Lasers and Electro-Optics (CLEO), (2011), pp. 1–2

    Google Scholar 

  20. K. Kravtsov, P.R. Prucnal, M.M. Bubnov, Opt. Express 15(20), 13114 (2007)

    Article  ADS  Google Scholar 

  21. A. Tait, M. Nahmias, M. Fok, P. Prucnal, in 2012 International Conference on Optical MEMS and Nanophotonics (OMN), (2012), pp. 212–213. doi:10.1109/OMEMS.2012.6318878

  22. A.N.Tait et al., The DREAM: an integrated photonic thresholder

    Google Scholar 

  23. A.N. Tait, B.J. Shastri, M.P. Fok, M.A. Nahmias, P.R. Prucnal, The DREAM: An integrated photonic thresholder (accepted, 2013)

    Google Scholar 

  24. C. Koch, H. Li, Vision Chips: Implementing Vision Algorithms With Analog Vlsi Circuits (IEEE Press, New York, 1995)

    Google Scholar 

  25. P.R. Prucnal, M.P. Fok, D. Rosenbluth, K. Kravtsov, in ICO International Conference on Information Photonics (IP), (2011)

    Google Scholar 

  26. D. Young, Nerve Cells and Animal Behaviour (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  27. N. Edagawa, M. Suzuki, S. Yamamoto, IEICE Trans. Electron. E81-C(8), 1251 (1998)

    Google Scholar 

  28. S. Mahon, G. Casassus, C. Mulle, S. Charpier, J. Physiol 550(Pt 3), 947 (2003)

    Article  Google Scholar 

  29. D. Stellwagen, R.C. Malenka, Nature 440(7087), 1054 (2006)

    Article  ADS  Google Scholar 

  30. L.F. Abbott, S.B. Nelson, Nature Neurosci. Suppl. 3, 1178 (2000)

    Article  Google Scholar 

  31. C. Savin, P. Joshi, J. Triesch, PLoS Comput Biol 6(4), e1000757 (2010)

    Article  MathSciNet  Google Scholar 

  32. B.J. Shastri, M.D. Levine, Mach. Vision Appl. 18(2), 107 (2007)

    Article  Google Scholar 

  33. J. Triesch, in Proceedings of the 15th international conference on Artificial Neural Networks: biological Inspirations — Volume Part I, ICANN’05 (Springer, Berlin, 2005), pp. 65–70

    Google Scholar 

  34. G. Chechik, Neural Comput. 15(7), 1481 (2003)

    Article  MATH  Google Scholar 

  35. G. Indiveri, E. Chicca, R. Douglas, Trans. Neur. Netw. 17(1), 211 (2006)

    Article  Google Scholar 

  36. G.S. Snider, in Proceedings of the 2008 IEEE International Symposium on Nanoscale Architecturess NANOARCH ’08 (IEEE Computer Society (Washington, DC, 2008), pp. 85–92

    Google Scholar 

  37. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Letters 10(4), 1297 (2010)

    Article  ADS  Google Scholar 

  38. G.S. Snider, SciDAC Rev. 10, 58 (2008)

    Google Scholar 

  39. M.P. Fok, Y. Tian, D. Rosenbluth, P.R. Prucnal, Opt. Lett. 37(16), 3309 (2012)

    Article  ADS  Google Scholar 

  40. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Solid State Commun. 102(2–3), 165 (1997)

    Article  ADS  Google Scholar 

  41. E. Ozbay, Science 311(5758), 189 (2006)

    Article  ADS  Google Scholar 

  42. G.M. Wojcik, W.A. Kaminski, Neurocomputing 58–60, 245 (2004)

    Article  Google Scholar 

  43. M.A. Nahmias et al., A leaky integrate-and-fire laser neuron for ultrafast cognitive computing

    Google Scholar 

  44. M.A. Nahmias et al., An evanescent hybrid silicon laser neuron

    Google Scholar 

  45. B.J. Shastri et al. Exploring excitability in graphene for spike processing networks

    Google Scholar 

  46. B.J. Shastri et al., Graphene excitable laser for photonic spike processing

    Google Scholar 

  47. G. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, U. Keller, JOSA B 16(3), 376 (1999)

    Article  ADS  Google Scholar 

  48. H. Wenzel, U. Bandelow, H. Wunsche, J. Rehberg, IEEE J. Quantum Electron 32(1), 69 (1996)

    Article  ADS  Google Scholar 

  49. D. Nugent, R. Plumb, M. Fisher, D. Davies, Electron. Lett. 31(1), 43 (1995)

    Article  Google Scholar 

  50. J. Dubbeldam, B. Krauskopf, Opt. commun. 159(4), 325 (1999)

    Article  ADS  Google Scholar 

  51. F. Koyama, J. Lightwave Technol. 24(12), 4502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Barbay, R. Kuszelewicz, A.M. Yacomotti, Opt. Lett. 36(23), 4476 (2011)

    Article  ADS  Google Scholar 

  53. Y. Li, T. Wang, R. Linke, Appl. Opt. 35(8), 1282 (1996)

    Article  ADS  Google Scholar 

  54. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, R. Baets, IEEE J. Quantum Electron 38(7), 949 (2002)

    Google Scholar 

  55. D. Louderback, G. Pickrell, H. Lin, M. Fish, J. Hindi, P. Guilfoyle, Electron. Lett. 40(17), 1064 (2004)

    Article  Google Scholar 

  56. L. Coldren, S. Corzine, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (New york, Wiley Series in Microwave and Optical Engineering (Wiley, 2011)

    Google Scholar 

  57. B.J. Shastri, C. Chen, K.D. Choquette, D.V. Plant, IEEE J. Quantum Electron 47(12), 1537 (2011)

    Article  ADS  Google Scholar 

  58. G.E. Giudice, D.V. Kuksenkov, H. Temkin, K.L. Lear, Appl. Phys. Lett. 74(7), 899 (1999)

    Article  ADS  Google Scholar 

  59. A. Hurtado, K. Schires, I. Henning, M. Adams, Appl. Phys. Lett. 100(10), 103703 (2012)

    Article  ADS  Google Scholar 

  60. A. Hurtado, I.D. Henning, M.J. Adams, Opt. Express 18(24), 25170 (2010) doi:10.1364/OE.18.025170. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-24-25170

  61. E. Izhikevich, IEEE Trans. Neural Netw. 15(5), 1063 (2004)

    Google Scholar 

  62. L. Gelens, L. Mashal, S. Beri, W. Coomans, G. Van der Sande, J. Danckaert, G. Verschaffelt, arXiv, preprint arXiv:1108.3704 (2011)

    Google Scholar 

  63. W. Coomans, L. Gelens, S. Beri, J. Danckaert, G. Van der Sande, Phys. Rev. E 84(3), 036209 (2011)

    Article  ADS  Google Scholar 

  64. M. Herrmann, J.A. Hertz, A. Prugel-Bennett, Netw. Comput. Neural Syst. 6(3), 403 (1995)

    Article  MATH  Google Scholar 

  65. E.M. Izhikevich, Neural Comput. 18(2), 245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Abeles, Corticonics: Neural Circuits of the Cerebral Cortex (Cambridge University Press, Cambridge, 1991)

    Book  Google Scholar 

  67. E. Bienenstock, Netw. Comput. Neural Syst. 6(2), 179 (1995)

    Article  MATH  Google Scholar 

  68. M.P. Fok, Y. Tian, D. Rosenbluth, P.R. Prucnal, Opt. Lett. (2012)

    Google Scholar 

  69. K. Boahen, Neuromorphic, Systems Engineering pp. 229–259 (1998)

    Google Scholar 

  70. J. Han, P. Jonker, Nanotechnology 14(2), 224 (2003)

    Article  ADS  Google Scholar 

  71. N. Mathur, Nature 419(6907), 573 (2002)

    Article  ADS  Google Scholar 

  72. G. Tononi, Biol. Bull. 215(3), 216 (2008)

    Article  Google Scholar 

  73. R. Ananthanarayanan, S.K. Esser, H.D. Simon, D.S. Modha, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (ACM, New York, NY, USA, 2009), SC ’09, pp. 63:1–63:12

    Google Scholar 

  74. D.S. Modha, R. Ananthanarayanan, S.K. Esser, A. Ndirango, A.J. Sherbondy, R. Singh, Commun. ACM 54(8), 62 (2011)

    Google Scholar 

  75. L.S. Smith, A. Hamilton, Neuromorphic Systems: Engineering Silicon from Neurobiology, vol. 10 (World Scientific Publishing Company Incorporated, 1998)

    Google Scholar 

  76. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J.V. Campenhout, Opt. Exp. 16(15), 11182 (2008)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Lockheed Martin Advanced Technology Laboratory through the IRAD program, as well as the Lockheed Martin Corporation through the Corporate University Research Program. The authors also acknowledge the support of the NSF MIRTHE Center at Princeton University, the Pyne Fund and Essig Enright Fund for Engineering in Neuroscience. The work of M. A. Nahmias and A. N. Tait was supported by the National Science Foundation Graduate Research Fellowship (NSF-GRF). The work of B. J. Shastri was supported by the National Sciences and Engineering Research Council of Canada (NSERC) Postdoctoral Fellowship (PDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Prucnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tait, A.N., Nahmias, M.A., Tian, Y., Shastri, B.J., Prucnal, P.R. (2014). Photonic Neuromorphic Signal Processing and Computing. In: Naruse, M. (eds) Nanophotonic Information Physics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40224-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40224-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40223-4

  • Online ISBN: 978-3-642-40224-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics