Skip to main content

Recent Advances in Decision Bireducts: Complexity, Heuristics and Streams

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8171))

Included in the following conference series:

Abstract

We continue our research on decision bireducts. For a decision system \(\mathbb{A}\) = (U,A ∪ {d}), a decision bireduct is a pair (B,X), where B ⊆ A is a subset of attributes discerning all pairs of objects in X ⊆ U with different values on the decision attribute d, and where B and X cannot be, respectively, reduced and extended. We report some new results related to NP-hardness of extraction of optimal decision bireducts, heuristics aimed at searching for sub-optimal decision bireducts, and applications of decision bireducts to stream data mining.

This research was partly supported by the Polish National Science Centre (NCN) grants 2011/01/B/ST6/03867 and 2012/05/B/ST6/03215.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Świniarski, R.W., Skowron, A.: Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters 24(6), 833–849 (2003)

    Article  MATH  Google Scholar 

  2. Ślęzak, D.: Approximate Entropy Reducts. Fundamenta Informaticae 53(3-4), 365–390 (2002)

    MathSciNet  Google Scholar 

  3. Abeel, T., Helleputte, T., de Peer, Y.V., Dupont, P., Saeys, Y.: Robust Biomarker Identification for Cancer Diagnosis with Ensemble Feature Selection Methods. Bioinformatics 26(3), 392–398 (2010)

    Article  Google Scholar 

  4. Ślęzak, D.: Approximation Reducts in Decision Tables. In: Proc. of IPMU 1996, vol. 3, pp. 1159–1164 (1996)

    Google Scholar 

  5. Ślęzak, D., Janusz, A.: Ensembles of Bireducts: Towards Robust Classification and Simple Representation. In: Kim, T.-H., Adeli, H., Ślęzak, D., Sandnes, F.E., Song, X., Chung, K.-I., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Stawicki, S., Widz, S.: Decision Bireducts and Approximate Decision Reducts: Comparison of Two Approaches to Attribute Subset Ensemble Construction. In: Proc. of FedCSIS 2012, pp. 331–338. IEEE Computer Society (2012)

    Google Scholar 

  7. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wróblewski, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. STUD FUZZ, vol. 56, pp. 49–88. Physica-Verlag, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Widz, S., Ślęzak, D.: Approximation Degrees in Decision Reduct-based MRI Segmentation. In: Proc. of FBIT 2007, pp. 431–436. IEEE Computer Society (2007)

    Google Scholar 

  9. Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Information Sciences 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mac Parthaláin, N., Jensen, R.: Simultaneous Feature And Instance Selection Using Fuzzy-Rough Bireducts. In: Proc. of FUZZ IEEE 2013 (2013)

    Google Scholar 

  11. Moshkov, M.J., Piliszczuk, M., Zielosko, B.: Partial Covers, Reducts and Decision Rules in Rough Sets – Theory and Applications. SCI, vol. 145. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  12. Nguyen, S.H., Nguyen, H.S.: Pattern Extraction from Data. Fundamenta Informaticae 34(1-2), 129–144 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Ślęzak, D.: Normalized Decision Functions and Measures for Inconsistent Decision Tables Analysis. Fundamenta Informaticae 44(3), 291–319 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Sarawagi, S., Thomas, S., Agrawal, R.: Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications. Data Min. Knowl. Discov. 4(2/3), 89–125 (2000)

    Article  Google Scholar 

  15. Kowalski, M., Stawicki, S.: SQL-based Heuristics for Selected KDD Tasks over Large Data Sets. In: Proc. of FedCSIS 2012, pp. 303–310. IEEE Computer Society (2012)

    Google Scholar 

  16. Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1998)

    Google Scholar 

  18. Janusz, A., Ślęzak, D.: Utilization of Attribute Clustering Methods for Scalable Computation of Reducts from High-Dimensional Data. In: Proc. of FedCSIS 2012, pp. 295–302. IEEE Computer Society (2012)

    Google Scholar 

  19. Janusz, A., Stawicki, S.: Applications of Approximate Reducts to the Feature Selection Problem. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds.) RSKT 2011. LNCS, vol. 6954, pp. 45–50. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  20. Janusz, A., Ślęzak, D., Nguyen, H.S.: Unsupervised Similarity Learning from Textual Data. Fundam. Inform. 119(3-4), 319–336 (2012)

    MATH  Google Scholar 

  21. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis Dimension. J. ACM 36(4), 929–965 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Aggarwal, C.C. (ed.): Data Streams – Models and Algorithms. Advances in Database Systems, vol. 31. Springer (2007)

    Google Scholar 

  23. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for Very Large Databases. In: Proc. of SIGMOD 1996, pp. 103–114. ACM Press (1996)

    Google Scholar 

  24. Ślęzak, D., Kowalski, M., Eastwood, V., Wróblewski, J.: Methods and Systems for Database Organization. US Patent 8,266,147 B2 (2012)

    Google Scholar 

  25. Havens, T.C., Bezdek, J.C.: A New Formulation of the coVAT Algorithm for Visual Assessment of Clustering Tendency in Rectangular Data. Int. J. Intell. Syst. 27(6), 590–612 (2012)

    Article  Google Scholar 

  26. Słowiński, R., Greco, S., Matarazzo, B.: Dominance-Based Rough Set Approach to Reasoning About Ordinal Data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stawicki, S., Ślęzak, D. (2013). Recent Advances in Decision Bireducts: Complexity, Heuristics and Streams. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds) Rough Sets and Knowledge Technology. RSKT 2013. Lecture Notes in Computer Science(), vol 8171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41299-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41299-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41298-1

  • Online ISBN: 978-3-642-41299-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics