Skip to main content

Detecting and Preventing Beacon Replay Attacks in Receiver-Initiated MAC Protocols for Energy Efficient WSNs

  • Conference paper
Secure IT Systems (NordSec 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8208))

Included in the following conference series:

Abstract

In receiver-initiated MAC protocols for Wireless Sensor Networks (WSNs), communication is initiated by the receiver of the data through beacons containing the receiver’s identity. In this paper, we consider the case of a network intruder that captures and replays such beacons towards legitimate nodes, pretending to have a fake identity within the network. To prevent this attack we propose RAP, a challenge-response authentication protocol that is able to detect and prevent the beacon replay attack. The effectiveness of the protocol is formally verified using OFMC and ProVerif. Furthermore, we provide an analysis that highlights the trade-offs between the energy consumption and the level of security, defined as the resilience of the protocol to space exhaustion.

This work was partially supported by the IDEA4CPS project granted by the Danish National Research Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVISPA: Deliverable 2.3: The Intermediate Format (2003), http://www.avispa-project.org

  2. Bachir, A., Dohler, M., Watteyne, T., Leung, K.: MAC Essentials for Wireless Sensor Networks. IEEE Commun. Surveys Tutorials 12(2), 222–248 (2010)

    Article  Google Scholar 

  3. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for security protocols. Int. Journal of Information Security 4(3), 181–208 (2005)

    Article  Google Scholar 

  4. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), pp. 82–96. IEEE Computer Society, Cape Breton (2001)

    Google Scholar 

  5. Deng, J., Han, R., Mishra, S.: Limiting dos attacks during multihop data delivery in wireless sensor networks. Int. J. Secur. Netw. 1(3/4) (2006)

    Google Scholar 

  6. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun. ACM 24(8), 533–536 (1981)

    Article  Google Scholar 

  7. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor. 29(2), 198–208 (2006)

    Article  MathSciNet  Google Scholar 

  8. Dong, J., Ackermann, K.E., Bavar, B., Nita-Rotaru, C.: Mitigating attacks against virtual coordinate based routing in wireless sensor networks. In: Proc. of the First ACM Conf. on Wireless Network Security, pp. 89–99. ACM (2008)

    Google Scholar 

  9. Fafoutis, X., Dragoni, N.: ODMAC: An On-Demand MAC Protocol for Energy Harvesting-Wireless Sensor Networks. In: Proc. 8th ACM Symp. on Performance Evaluation of Wireless Ad-Hoc, Sensor, and Ubiquitous Networks (PE-WASUN), pp. 49–56. ACM (2011)

    Google Scholar 

  10. Ghosal, A., Halder, S., Sur, S., Dan, A., DasBit, S.: Ensuring basic security and preventing replay attack in a query processing application domain in WSN. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010, Part III. LNCS, vol. 6018, pp. 321–335. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: Proc. of the 33rd Annual Hawaii Int. Conf. on System Sciences, vol. 2, p. 10 (2000)

    Google Scholar 

  12. Horn, A.: On sentences which are true of direct unions of algebras. J. Symb. Log., 14–21 (1951)

    Google Scholar 

  13. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and countermeasures. In: Proc. of the First IEEE Int. Workshop on Sensor Network Protocols and Applications, pp. 113–127 (2003)

    Google Scholar 

  14. Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for wireless sensor networks. In: Proc. 2nd ACM Int. Conf. on Embedded Networked Sensor Syst. (SenSys), pp. 162–175. ACM (2004)

    Google Scholar 

  15. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M., Brewer, E., Culler, D.: TinyOS: An Operating System for Sensor Networks. In: Ambient Intelligence, pp. 115–148. Springer (2005)

    Google Scholar 

  16. Li, J., Zhang, D., Guo, L.: DCM: A Duty Cycle Based Multi-channel MAC Protocol for Wireless Sensor Networks. In: IET Int. Conf. on Wireless Sensor Network (IET-WSN), pp. 233–238 (2010)

    Google Scholar 

  17. Lin, E.Y.A., Rabaey, J.M., Wolisz, A.: Power-efficient rendez-vous schemes for dense wireless sensor networks. In: Proc. IEEE Int. Conf. on Communn. (ICC), vol. 7, pp. 3769–3776. IEEE (2004)

    Google Scholar 

  18. Liu, D., Ning, P.: Efficient distribution of key chain commitments for broadcast authentication in distributed sensor networks. Tech. rep. (2002)

    Google Scholar 

  19. Lowe, G.: A hierarchy of authentication specifications. In: CSFW 1997, pp. 31–43. IEEE Computer Society Press (1997)

    Google Scholar 

  20. Maurer, U.M., Schmid, P.E.: A calculus for security bootstrapping in distributed systems. J. Comp. Sec. 4(1), 55–80 (1996)

    Google Scholar 

  21. Mödersheim, S.: Algebraic properties in alice and bob notation. In: Int. Conf. on Availability, Reliability and Security (ARES), pp. 433–440 (2009)

    Google Scholar 

  22. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and web services with databases. In: ACM Conf. on Computer and Communications Security, pp. 351–360 (2010)

    Google Scholar 

  23. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Peng, Y., Li, Z., Qiao, D., Zhang, W.: Delay-Bounded MAC with Minimal Idle Listening for Sensor Networks. In: Proc. 30th Ann. Joint Conf. IEEE Comput. and Communn. Soc (INFOCOM), pp. 1314–1322. IEEE (2011)

    Google Scholar 

  25. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

    Article  MATH  Google Scholar 

  26. Song, H., Zhu, S., Cao, G.: Attack-resilient time synchronization for wireless sensor networks. In: Int. Conf. on Mobile Adhoc and Sensor Systems, pp. 765–772 (2005)

    Google Scholar 

  27. Stallings, W.: Cryptography and Network Security. Prentice Hall (2005)

    Google Scholar 

  28. Sun, Y., Gurewitz, O., Du, S., Tang, L., Johnson, D.B.: ADB: An Efficient Multihop Broadcast Protocol based on Asynchronous Duty-cycling in Wireless Sensor Networks. In: Proc. 7th ACM Int. Conf. on Embedded Networked Sensor Syst. (SenSys), pp. 43–56. ACM (2009)

    Google Scholar 

  29. Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: A Receiver-Initiated Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in Wireless Sensor Networks. In: Proc. 6th ACM Int. Conf. on Embedded Networked Sensor Syst. (SenSys), pp. 1–14. ACM (2008)

    Google Scholar 

  30. Tang, L., Sun, Y., Gurewitz, O., Johnson, D.B.: EM-MAC: A Dynamic Multichannel Energy-Efficient MAC Protocol for Wireless Sensor Networks. In: Proc. of ACM MobiHoc 2011, p. 23 (2011)

    Google Scholar 

  31. Tang, L., Sun, Y., Gurewitz, O., Johnson, D.B.: PW-MAC: An Energy-Efficient Predictive-Wakeup MAC Protocol for Wireless Sensor Networks. In: Proc. of INFOCOM 2011, pp. 1305–1313. IEEE (2011)

    Google Scholar 

  32. Texas Instruments: CC250: Low-cost low-power 2.4 ghz rf transceiver (2011), http://www.ti.com/lit/ds/symlink/cc2500.pdf

  33. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System description: spass version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Yadav, P., McCann, J.A.: YA-MAC: Handling Unified Unicast and Broadcast Traffic in Multi-hop Wireless Sensor Networks. In: Proc. 7th IEEE Int. Conf. on Distributed Computing in Sensor Systems (DCOSS), pp. 1–9. IEEE (2011)

    Google Scholar 

  35. Yong, Y.T., Chow, C.O., Kanesan, J., Ishii, H.: EE-RI-MAC: An energy-efficient receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. Journal of Physical Sciences 6(11), 2633–2643 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Mauro, A., Fafoutis, X., Mödersheim, S., Dragoni, N. (2013). Detecting and Preventing Beacon Replay Attacks in Receiver-Initiated MAC Protocols for Energy Efficient WSNs. In: Riis Nielson, H., Gollmann, D. (eds) Secure IT Systems. NordSec 2013. Lecture Notes in Computer Science, vol 8208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41488-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41488-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41487-9

  • Online ISBN: 978-3-642-41488-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics