Skip to main content

On a Mathematical Model of Adaptive Immune Response to Viral Infection

  • Conference paper
Numerical Analysis and Its Applications (NAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8236))

Included in the following conference series:

Abstract

In this paper we study a mathematical model formulated within the framework of the kinetic theory for active particles. The model is a bilinear system of integro-differential equations (IDE) of Boltzmann type and it describes the interactions between virus population and the adaptive immune system. The population of cytotoxic T lymphocytes is additionally divided into precursor and effector cells. Conditions for existence and uniqueness of the solution are studied. Numerical simulations of the model are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, A., Lichtman, A.: Basic Immunology: Functions and Disorders of the Immune System. Elsevier, Philadelphia (2009)

    Google Scholar 

  2. Arlotti, L., Bellomo, N., Lachowicz, M.: Kinetic equations modelling population dynamics. Transport Theory Statist. Phys. 29, 125–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belleni-Morante, A.: Applied Semigroups and Evolution Equations. Oxford Univ. Press, Oxford (1979)

    MATH  Google Scholar 

  4. Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living systems focusing on developmental biology and evolution: a review and perspectives. Physics of Life Reviews 8, 1–18 (2011)

    Article  Google Scholar 

  5. Bellomo, N., Bianca, C.: Towards a Mathematical Theory of Complex Biological Systems. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  6. Bianca, C.: Mathematical modelling for keloid formation triggered by virus: Malignant effects and immune system competition. Math. Models Methods Appl. Sci. 21, 389–419 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolev, M., Korpusik, A., Markovska, A.: Adaptive immunity and CTL differentiation - a kinetic modeling approach. Mathematics in Engineering, Science and Aerospace 3, 285–293 (2012)

    MATH  Google Scholar 

  8. Shampine, L., Reichelt, M.: The Matlab ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wodarz, D.: Killer Cell Dynamics. Springer, New York (2007)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolev, M., Markovska, A., Korpusik, A. (2013). On a Mathematical Model of Adaptive Immune Response to Viral Infection. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2012. Lecture Notes in Computer Science, vol 8236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41515-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41515-9_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41514-2

  • Online ISBN: 978-3-642-41515-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics