Skip to main content

Boundary Value Problems for Fractional PDE and Their Numerical Approximation

  • Conference paper
Numerical Analysis and Its Applications (NAA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8236))

Included in the following conference series:

Abstract

Fractional order partial differential equations are considered. The main attention is devoted to fractional in time diffusion equation. An interface problem for this equation is studied and its well posedness in the corresponding Sobolev like spaces is proved. Analogous results are obtained for a transmission problem in disjoint intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alikhanov, A.A.: Boundary value problems for the diffusion equation of the variable order in differential and difference settings (May 10, 2011); arXiv:1105.2033v1 [math.NA]

    Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaeert, M.M.: The fractional order governing equations of Levy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasmas 8(12), 5096–5103 (2001)

    Article  Google Scholar 

  4. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differential Equations 23, 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  5. Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reactiondiffusion system. SIAM J. Appl. Math. 62, 870–887 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ilic, M., Turner, I.W., Liu, F., Anh, V.: Analytical and numerical solutions to one-dimensional fractional-in-space diffusion in a composite medim. Appl. Math. Comp. 216, 2248–2262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jovanović, B.S., Vulkov, L.G.: Operator’s approach to the problems with concentrated factors. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 1988, pp. 439–450. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Jovanović, B.S., Vulkov, L.G.: On the convergence of finite difference schemes for the heat equation with concentrated capacity. Numer. Math. 89(4), 715–734 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jovanović, B.S., Vulkov, L.G.: Numerical solution of a two-dimensional parabolic transmission problem. Int. J. Numer. Anal. Model. 7(1), 156–172 (2010)

    MathSciNet  Google Scholar 

  10. Jovanović, B.S., Vulkov, L.G.: Numerical solution of a parabolic transmission problem. IMA J. Numer. Anal. 31, 233–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kirchner, J.W., Feng, X., Neal, C.: Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  12. Kiryakova, V.: A survey on fractional calculus, fractional order differential and integral equations and related special functions. Rousse (2012)

    Google Scholar 

  13. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lions, J.L., Magenes, E.: Non homogeneous boundary value problems and applications. Springer, Berlin (1972)

    Book  Google Scholar 

  15. Love, E.R., Young, L.C.: On fractional integration by parts. Proc. London Math. Soc., Ser. 2 44, 1–35 (1938)

    Article  Google Scholar 

  16. Mainardi, F.: Fractional diffusive waves in viscoelastic solids. In: Wegner, J.L., Norwood, F.R. (eds.) Nonlinear Waves in Solids, pp. 93–97. Fairfield (1995)

    Google Scholar 

  17. Mainardi, F.: Fractional calculus. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997)

    Google Scholar 

  18. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Müller, H.P., Kimmich, R., Weis, J.: NMR flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius. Phys. Rev. E 54, 5278–5285 (1996)

    Article  Google Scholar 

  20. Nigmatullin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Physica Status Solidi. B 133(1), 425–430 (1986)

    Article  MathSciNet  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press (1999)

    Google Scholar 

  22. Samarskii, A.A.: Theory of difference schemes. Nauka, Moscow (1989) Russian; English edition: Pure and Appl. Math., vol. 240. Marcel Dekker, Inc., (2001)

    Google Scholar 

  23. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Physics Today 55(11), 48–54 (2002)

    Article  Google Scholar 

  24. Taukenova, F.I., Shkhanukov-Lafishev, M.K.: Difference methods for solving boundary value problems for fractional differential equations. Comput. Math. Math. Phys. 46(10), 1785–1795 (2006)

    Article  MathSciNet  Google Scholar 

  25. Vladimirov, V.S.: Equations of mathematical physics. Nauka, Moscow (1988) (Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jovanović, B.S., Vulkov, L.G., Delić, A. (2013). Boundary Value Problems for Fractional PDE and Their Numerical Approximation. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Numerical Analysis and Its Applications. NAA 2012. Lecture Notes in Computer Science, vol 8236. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41515-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41515-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41514-2

  • Online ISBN: 978-3-642-41515-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics