Skip to main content

Formalization of Laplace Transform Using the Multivariable Calculus Theory of HOL-Light

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8312))

Abstract

Algebraic techniques based on Laplace transform are widely used for solving differential equations and evaluating transfer of signals while analyzing physical aspects of many safety-critical systems. To facilitate formal analysis of these systems, we present the formalization of Laplace transform using the multivariable calculus theories of HOL-Light. In particular, we use integral, differential, transcendental and topological theories of multivariable calculus to formally define Laplace transform in higher-order logic and reason about the correctness of Laplace transform properties, such as existence, linearity, frequency shifting and differentiation and integration in time domain. In order to demonstrate the practical effectiveness of this formalization, we use it to formally verify the transfer function of Linear Transfer Converter (LTC) circuit, which is a commonly used electrical circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerends, R.J., Morsche, H.G., Van den Berg, J.C., Van de Vrie, E.M.: Fourier and Laplace Transforms. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Denman, W., Akbarpour, B., Tahar, S., Zaki, M., Paulson, L.C.: Formal Verification of Analog Designs using MetiTarski. In: Formal Methods in Computer Aided Design, pp. 93–100. IEEE (2009)

    Google Scholar 

  3. Dorcak, L., Petras, I., Gonzalez, E., Valsa, J., Terpak, J., Zecova, M.: Application of PID Retuning Method for Laboratory Feedback Control System Incorporating FO Dynamics. In: International Carpathian Control Conference (ICCC), pp. 38–43. IEEE (2013)

    Google Scholar 

  4. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: Spaceex: Scalable Verification of Hybrid Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Gaydecki, P.: Foundations of Digital Signal Processing: Theory, Algorithms and Hardware Design. IET (2004)

    Google Scholar 

  6. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Harrison, J.: The HOL Light Theory of Euclidean Space. Automated Reasoning 50(2), 173–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zaki, M.H., Tahar, S., Boisr, G.: Formal Verification of Analog and Mixed Signal Designs: A survey. Microelectronics Journal 39, 1395–1404 (2008)

    Article  Google Scholar 

  9. Ioinovici, A.: Power Electronics and Energy Conversion Systems, Fundamentals and Hard-switching Converters. John Wiley & Sons (2013)

    Google Scholar 

  10. Paul, B.: Industrial Electronics and Control. PHI Learning Pvt. Ltd. (2004)

    Google Scholar 

  11. Paulson, L.C.: ML for the Working Programmer. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  12. Podlubny, I.: The Laplace Transform Method for Linear Differential Equations of the Fractional Order. Technical report, Slovak Acad. Sci., Kosice (1994)

    Google Scholar 

  13. Rashid, M.: Power Electronics Handbook. Elsevier (2011)

    Google Scholar 

  14. Schiff, J.L.: The Laplace Transform: Theory and Applications. Springer (1999)

    Google Scholar 

  15. Taqdees, S.H.: Formalization of Laplace Transform using the Multivariable Calculus Theory of HOL-Light (2013), http://save.seecs.nust.edu.pk/shtaqdees/laplace.html

  16. Ucar, A., Cetin, E., Kale, I.: A Continuous-Time Delta-Sigma Modulator for RF Subsampling Receivers. In: IEEE Transactions on Circuits and Systems, pp. 272–276. IEEE (2012)

    Google Scholar 

  17. Westra, J.R., Verhoeven, C.J.M., van Roermund, A.H.M.: Oscillators and Oscillator Systems: Classification, Analysis and Synthesis. Springer (1999)

    Google Scholar 

  18. Xiao, J.: Integral and Functional Analysis. Nova Publishers (2008)

    Google Scholar 

  19. Yang, X.: Mathematical Modeling with Multidisciplinary Applications. John Wiley & Sons (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Taqdees, S.H., Hasan, O. (2013). Formalization of Laplace Transform Using the Multivariable Calculus Theory of HOL-Light. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2013. Lecture Notes in Computer Science, vol 8312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45221-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45221-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45220-8

  • Online ISBN: 978-3-642-45221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics