Skip to main content

Altered Protein Kinase and Amyloid ß-Protein Precursor in Alzheimer’s Disease: Which Comes First?

  • Conference paper
Biological Markers of Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

AD is a neurodegenerative disease characterized by the formation of neuronal inclusions, termed NFT, and extracellular amyloid deposits surrounded by dystrophic neuntes, collectively referred to as NP. NP are specific to AD, whereas NFT are found in many other neurodegenerative diseases. The purpose of this report is to present a hypothesis regarding the biochemical basis for these pathologic features of AD — neurodegeneration and NFT and NP formation.

Among the three AD pathologies, neurodegeneration is central to the disease. The reason for the premature death of neurons in AD brains is unknown. Because neuronal survival requires the combined effect of growth factors, it is possible that one or more growth factors are missing in the AD brain. Alternatively, the intracellular machinery responsible for the function of growth factors may be deficient in the disease. One form of machinery important for growth factor-mediated cell maintenance is the battery of protein kinases, in particular, PKC. PKC mediates many functions of nerve growth factor, the best-characterized neurotrophic factor. Both the kinases, including PKC, and the phosphorylation levels are altered in AD brains, whereas levels of nerve growth factor are not.

There are questions to be answered. Is aberrant phosphorylation in AD specific to this disease? Is aberrant phosphorylation intrinsic to AD or secondary to neurodegeneration? Is PKC reduction relevant to NFT and NP formation? Why is phosphorylation aberrant in AD?

The abnormality in phosphorylation may be related to the expression of some biochemical characteristics that correlate with NFT formation. Furthermore, phosphorylation may be involved in the regulation of the processing of ABPP, which constitutes a major portion of the NP core. Conversely it is possible that ABPP is involved in the regulation of phosphorylation in neurons. Because ABPP is aberrantly processed in AD brain, this protein may be a candidate as the cause of abnormal phosphorylation and eventual neurodegeneration in AD.

This work was supported by grants from the Alzheimer’s Disease and Related Disorders Association, the McKnight Foundation, the California State Department of Health Services, the Sandoz Foundation for Gerontological Research, and the National Institutes of Health (AG 05386, AG 05131, and AG 08205). D.S.I, is the recipient of a Pathological Training Grant (NS07078–12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of normally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J Biol Chem 262:17577–17583

    PubMed  CAS  Google Scholar 

  • Baudier J, Lee S-H, Cole RD (1987) Separation of the different microtubule-associated tau protein species from bovine brain and their mode II phosphorylation by Ca2+/phospholipid-dependent protein kinase C J Biol Chem 262:17584–17590

    PubMed  CAS  Google Scholar 

  • Birecree E, Whetsell WO, Stoscheck C, King LE, Nanney LA (1988) Immunoreactive epidermal growth factor receptors in neuritic plaques from patients with Alzheimer’s disease. J Neuropathol Exp Neural 47:549–560

    Article  CAS  Google Scholar 

  • Blass JP, Zemcov A (1984) Alzheimer’s disease: a metabolic systems degeneration? Neurochem Pathol 2:103–114

    Article  PubMed  CAS  Google Scholar 

  • Brion JP, van den Bosch de Aguilar P, Flament-Durand J (1985) Senile dementia of the Alzheimer type: morphological and immunocytochemical studies. In: Traber J, Gispen WH (eds) Senile dementia of the Alzheimer type. Springer, Berlin Heidelberg New York, pp 164–174 (Advances in applied neurological sciences, vol 2)

    Chapter  Google Scholar 

  • Clark AW, Krekoski CA, Parhad IM, Liston D, Julien J-P, Hoar DI (1989) Altered expression of genes for amyloid and cytoskeletal proteins in Alzheimer cortex. Ann Neurol 25:331–339

    Article  PubMed  CAS  Google Scholar 

  • Cleveland DW, Hwo S-Y, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    Article  PubMed  CAS  Google Scholar 

  • Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452:165–174

    Article  PubMed  CAS  Google Scholar 

  • Cole C, Masliah E, Terry RD, Huyhn TV, DeTeresa R, Saitoh T (1989) An antiserum against amyloid β-protein precursor detects a unique peptide in Alzheimer’s brain. Neurosci Lett 100:340–346

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Nido J, Serrano L, Méndez E, Avila J (1988) A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-IB during neuroblastoma cell differentiation. J Cell Biol 106:2057–2065

    Article  PubMed  CAS  Google Scholar 

  • Gandy S, Czernik AJ, Greengard P (1988) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85:6218–6221

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer’s disease. Mol Brain Res 1:85–92

    Article  Google Scholar 

  • Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    Article  PubMed  CAS  Google Scholar 

  • Greengard P (1978) Phosphorylated proteins as physiological effectors. Science 119:146–152

    Article  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wiśniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  • Hoshi M, Nishida E, Miyata Y, Sakai H, Miyoshi T, Ogawara H, Akiyama T (1987) Protein kinase C phosphorylates tau and induces its functional alterations. FEBS Lett 217:237–241

    Article  PubMed  CAS  Google Scholar 

  • Huyhn TV, Cole G, Katzman R, Huang K-P, Saitoh T (1989) Reduced MT 79,000 protein phosphorylation and PK-C immunoreactivity in AD fibroblasts. Arch Neurol, in press

    Google Scholar 

  • Hyman BT, Van Hoesen GW, Wolozin BL, Davies P, Kromer LJ, Damasio AR (1988) Alz-50 antibody recognizes Alzheimer-related neuronal charges. Ann Neurol 23:371–379

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99:1807–1810

    PubMed  CAS  Google Scholar 

  • Iimoto DS, Masliah E, DeTeresa R, Terry RD, Saitoh Τ (1989) Aberrant casein kinase II in Alzheimer’s disease. Submitted

    Google Scholar 

  • Iimoto DS, Saitoh Τ (1988) Altered casein kinase activity in Alzheimer brain. Soc Neurosci Abstr 14:1085

    Google Scholar 

  • Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, Alafuzoff I, Winblad В (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 11:421–426

    Article  Google Scholar 

  • Ishiguro K, Ihara Y, Uchida T, Imahori К (1988) A novel tubulin-dependent protein kinase forming a paired helical filament epitope on tau. J Biochem 104:319–321

    PubMed  CAS  Google Scholar 

  • Kessler JA (1987) Deficiency of a cholinergic differentiating factor in fibroblasts of patients with Alzheimer’s disease. Ann Neurol 21:95–98

    Article  PubMed  CAS  Google Scholar 

  • Klarlund JK, Czech MP (1988) Insulin-like growth factor I and insulin rapidly increase casein kinase II activity in BALC/C 3T3 fibroblasts. J Biol Chem 263:15872–15875

    PubMed  CAS  Google Scholar 

  • Kochhar A, Saitoh T, Zivin JA (1989) Reduced protein kinase С activity in ischemic spinal cord. J Neurochem 53:946–952

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (τ) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83:4044–4048

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Orecchio LD, Binder L, Trojanowski JQ, Lee VM-Y, Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1:817–825

    Article  PubMed  CAS  Google Scholar 

  • Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem 48:923–959

    Article  PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Davies P, Yen S-H (1988) Alz-50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with τ proteins from bovine and normal human brain. J Biol Chem 263:7943–7947

    PubMed  CAS  Google Scholar 

  • Li JC, Kaminskas E (1985) Deficient repair of DNA lesions in Alzheimer’s disease fibroblasts. Biochem Biophys Res Commun 129:733–738

    Article  PubMed  CAS  Google Scholar 

  • Lindwall G, Cole RD (1984) The purification of tau protein and the occurrence of two phosphorylation states of tau in brain. J Biol Chem 59:12241–12245

    Google Scholar 

  • Mattson MP, Guthrie PB, Kater SB (1988) Intracellular messengers in the generation and degeneration of hippocampal neuroarchitecture. J Neurol Res 21:447–464

    Article  CAS  Google Scholar 

  • Meier-Ruge W, Ivangoff P, Reichlmeier К (1984) Neurochemical enzyme changes in Alzheimer’s and Pick’s disease. Arch Gerontol Geriat 3:61–65

    Article  Google Scholar 

  • Neve RL, Finch EA, Dawes LR (1988) Expression of the Alzheimer amyloid precursor gene transcripts in the human brain. Neuron 1:669–677

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1988) The molecular heterogeneity of protein kinase С and its implications for cellular regulation. Nature 334:661–665

    Article  PubMed  CAS  Google Scholar 

  • Nukina N, Kosik KS, Selkoe DJ (1988) The monoclonal antibody, Alz-50, recognizes tau proteins in Alzheimer’s disease brain. Neurosci Lett 87:240–246

    Article  PubMed  CAS  Google Scholar 

  • Peterson С, Goldman JE (1986) Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci USA 83:2758–2762

    Article  PubMed  CAS  Google Scholar 

  • Peterson C, Ratan RR, Shelanski ML, Goldman JE (1986) Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sci USA 83:7999–8001

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T, Cole G, Huynh TV (1989) Aberrant protein kinase С cascades in Alzheimer’s disease. In: Lauder J, Privat A, Giacobini E, Timiras PS, Vernadakis A (eds) Molecular aspects of development and aging of the nervous system. Plenum, New York, in press

    Google Scholar 

  • Saitoh T, Dobkins KR (1986a) In vitro phosphorylation of a MT 60,000 protein is elevated in Alzheimer brain. Proc Natl Acad Sci USA 83:9764–9767

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T, Dobkins KR (1986b) Protein kinase С in human brain and its inhibition by calmodulin. Brain Res 379:196–199

    Article  PubMed  CAS  Google Scholar 

  • Saitoh T, Hansen LA, Dobkins KR, Terry RD (1988) Increased Mr 60,000 protein phosphorylation is correlated with neocortical neurofibrillary tangles in Alzheimer’s disease. J Neuropathol Exp Neurol 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, LaCorbiere M, Saitoh T, Cole G (1989) Characterization of an amyloid β-precursor protein that binds heparin and contains tyrosine sulfate. Proc Natl Acad Sci USA 86:2066–2069

    Article  PubMed  CAS  Google Scholar 

  • Schubert D, Schroeder R, LaCorbiere M, Saitoh T, Cole G (1988) Amyloid β protein precursor is possibly a heparan sulfate proteoglycan core protein. Science 241:223–226

    Article  PubMed  CAS  Google Scholar 

  • Serrano L, Diaz-Nido J, Wandosell F, Avila J (1987) Tubulin phosphorylation by casein kinase II is similar to that found in vivo. J Cell Biol 105:1731–1739

    Article  PubMed  CAS  Google Scholar 

  • Snow AD, Mar H, Nochlin D, Kinata K, Kato M, Suzuki S, Hassell J, Wight TN (1988) The presence of heparin sulfate proteoglycans in the neuritic plaques and congophilic angiopathy in Alzheimer’s disease. Am J Pathol 133:456–463

    PubMed  CAS  Google Scholar 

  • Sternberger NH, Sternberger LA, Ulrich J (1985) Aberrant neurofilament phosphorylation in Alzheimer’s disease. Proc Natl Acad Sci USA 82:4274–4276

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Nakamura S, Uéda К, Kameyama M, Shiojiri S, Takahashi Y, Kitaguchi Ν, Ito H (1988) Three types of amyloid protein precursor mRNA in human brain: their differential expression in Alzheimer’s disease. Biochem Biophys Res Commun 157:472–479

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Katzman R (1983) Senile dementia of the Alzheimer type. Ann Neurol 14:497–506

    Article  PubMed  CAS  Google Scholar 

  • Uéda K, Cole G, Sundsmo M, Katzman R, Saitoh T (1989) Decreased adhesiveness of Alzheimer fibroblast: is β-protein precursor involved? Ann Neurol 25:246–251

    Article  PubMed  Google Scholar 

  • Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid β-protein enhances the survival of hip-pocampal neurons in vitro. Science 243:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Mirra SS, Pollock NJ, Binder LI (1986) Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (τ). Proc Natl Acad Sci USA 83:4040–4043

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saitoh, T., Iimoto, D.S. (1989). Altered Protein Kinase and Amyloid ß-Protein Precursor in Alzheimer’s Disease: Which Comes First?. In: Boller, F., Katzman, R., Rascol, A., Signoret, JL., Christen, Y. (eds) Biological Markers of Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46690-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-46690-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-46692-2

  • Online ISBN: 978-3-642-46690-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics