Skip to main content

Genes Expressed in the Overwinter Buds of Gentian (Gentiana spp.): Application to Taxonomic, Phylogenetic, and Phylogeographical Analyses

  • Chapter
  • First Online:
The Gentianaceae - Volume 1: Characterization and Ecology

Abstract

Vegetative reproduction through overwinter buds is important for maintenance of parental strains with favorable phenotypes in the breeding of perennial Gentiana spp. This chapter focuses on the genes and proteins that are enriched in buds. W14/15 genes are some of the most abundantly expressed genes in these overwinter buds and encode a novel esterase. They are considered to be involved in stress tolerance and in hormone signaling/metabolism and/or defense systems. The highly polymorphic nature of these genes makes them a useful tool to analyze the phylogeny, taxonomy, phylogeography, and pedigree of Gentiana spp. In addition, W14/15 can be used as a specific phenotypic marker. The functional role of W14/15 in regulating some characters of overwinter buds and some practical uses of these genes are discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and crucial components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davitashvili N, Karrer G (2006) Taxonomic relationships of the western Asian taxa of entiana sect. Pneumonanthe Bot J Linn Soc 152:197–208

    Article  Google Scholar 

  • Doi H, Takahashi R, Hikage T, Takahata Y (2010) Embryogenesis and doubled haploid production from anther culture in gentian (Gentiana triflora). Plant Cell Tiss Org Cult 102:27–33

    Article  Google Scholar 

  • Doi H, Yokoi S, Hikage T, Nishihara M, Tsutsumi K, Takahata Y (2011) Gynogenesis in Gentians (Gentiana triflora, G. Scabra): production of haploids and doubled haploids. Plant Cell Rep 30:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Espartero J, Sanchez-Aguayo I, Pardo JM (1995) Molecular characterization of glyoxalase I from a higher plant; upregulation by stress. Plant Mol Biol 29:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Ganeshan S, Sharma P, Young L, Kumar A, Fowler DB, Chibbar RN (2011) Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. Plant Mol Biol 75:379–398

    Article  CAS  PubMed  Google Scholar 

  • Heikinheimo P, Goldman A, Jeffries C, Ollis DL (1999) Of barn owls and bankers: a lush variety of a/b hydrolases. Struct Fold Des 7:R141–R146

    Article  CAS  Google Scholar 

  • Hikage T, Saitoh Y, Tanaka-Saitoh C, Hagami H, Satou F, Shimotai Y, Nakano Y, Takahashi M, Takahata Y, Tsutsumi K (2007) Structure and allele-specific expression variation of novel alpha/beta hydrolase fold proteins in gentian plants. Mol Genet Genomics 278:95–104

    Article  CAS  PubMed  Google Scholar 

  • Hikage T, Kogusuri K, Tanaka-Saito C, Watanabe S, Chiba S, Kume K, Doi H, Saitoh Y, Takahata Y, Tsutsumi K (2011) W14/15 esterase gene haplotype can be a genetic landmark of cultivars and species of the genus Gentiana L. Mol Genet Genomics 285:47–56

    Article  CAS  PubMed  Google Scholar 

  • Ho TN, Liu SW (2001) A worldwide monograph of Gentiana. Science Press, Beijing

    Google Scholar 

  • Jensen SR, Schripsema J (2002) Chemotaxonomy and pharmacology of gentianaceae. In: Struwe L, Albert VA (eds) Gentianaceae-systematics and natural history. Cambridge University Press, UK, pp 563–573

    Google Scholar 

  • Koehlein F (1991) Gentians. Christopher Helm Ltd., London

    Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee D, Ahsan N, Lee S, Lee J, Bahk J, Kang K, Lee B (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa K, Ogata M, Hikage T, Minami H, Shimotai Y, Saitoh Y, Yamashita T, Ouchi A, Tsutsumi R, Fujioka T, Tsutsumi K (2006) Antiproliferative activity of root extract from gentian plant (Gentiana triflora) on cultured and implanted tumor cells. Biosci Biotechnol Biochem 70:1046–1048

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, Matsukawa K, Kogusuri K, Yamashita T, Hikage T, Ito K, Saitoh Y, Tsutsumi K (2011) Gentian extract induces caspase-independent and mitochondria-modulated cell death. Adv Biol Chem 1:49–57

    Article  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotech 9:214–219

    Article  CAS  PubMed  Google Scholar 

  • Struwe L, Kadereit JW, Klackenberg J, Nilsson S, Thiv M, von Hagen KB, Albert VA (2002) Systematics, character evolution, and biogeography of Gentianaceae, including a new tribal and subtribal classification. In: Struwe L, Albert VA (eds) Gentianaceae-systematics and natural history. Cambridge University Press, UK, pp 21–309

    Google Scholar 

  • Stuhlfelder C, Mueller MJ, Warzecha H (2004) Cloning and expression of a tomato cDNA encoding a methyl jasmonate cleaving esterase. Eur J Biochem 271:2976–2983

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi M, Hikage T, Yamashita T, Saitoh Y, Endou M, Tsutsumi K (2006) Stress-related proteins are specifically expressed under non-stress conditions in the overwinter buds of the gentian plant Gentiana triflora. Breed Sci 56:39–46

    Article  CAS  Google Scholar 

  • Toyokuni H (1963) Conspectus Gentianacearum Japonicarum: a general view of the Gentianaceae indigenous to Japan. J Fac Sci Hokkaido Univ Ser 7:137–259

    Google Scholar 

  • Yang Y, Xu R, Ma C-J, Vlot AC, Klessig DF, Pichersky E (2008) Inactive methyl indole-3-acetic acid can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiol 147:1034–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yonezawa N, Kawano S (1989) Variations in Japanese Gentiana Sect. Pneumonanthe (Gentianaceae) with special reference to their taxonomic status. Acta Phytotax Geobot 40:13–30 (Japanese with English abstract)

    Google Scholar 

  • Yoshiike T (1992) Rindou (Gentiana). Seibunndou Shinkousha, Tokyo, Japan (in Japanese)

    Google Scholar 

  • Zang X, Komatsu S (2007) A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437

    Article  CAS  PubMed  Google Scholar 

  • Zong GY, Goren R, Riov J, Sisler EC, Holland D (2001) Characterization of an ethylene-induced esterase from Citrus sinensis by competitive hybridization. Physiol Plant 113:267–274

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by “Research and Development Projects for Application in Promoting New Policy of Agriculture, Forestry and Fisheries” from the Ministry of Agriculture, Forestry and Fisheries of Japan, and by a grant for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors thank Miho Takahashi, Claire Saito, Kiyomi Kogusuri, Shuji Watanabe, Sakura Chiba, Miyuki Yamazaki, Drs. Yoshitaka Shimotai, Hisako Doi, and Kohei Kume for collaboration, support, and discussion, and Drs. Yoshihito Takahata, Tetsuro Yamashita, Abidur Rahman, and Yasushi Saitoh for suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tsutsumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsutsumi, Ki., Hikage, T. (2014). Genes Expressed in the Overwinter Buds of Gentian (Gentiana spp.): Application to Taxonomic, Phylogenetic, and Phylogeographical Analyses. In: Rybczyński, J., Davey, M., Mikuła, A. (eds) The Gentianaceae - Volume 1: Characterization and Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54010-3_9

Download citation

Publish with us

Policies and ethics