Skip to main content

Surface Reconstruction by Wrapping Finite Sets in Space

  • Chapter
Discrete and Computational Geometry

Part of the book series: Algorithms and Combinatorics ((AC,volume 25))

Abstract

Given a finite point set in ℝ3, the surface reconstruction problem asks for a surface that passes through many but not necessarily all points. We describe an unambiguous definition of such a surface in geometric and topological terms,and sketch a fast algorithm for constructing it. Our solution overcomes past limitations to special point distributions and heuristic design decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-D. Boissonnat. Geometric structures for three-dimensional shape representation.ACM Trans. Graphics 3 (1984), 266-286.

    Article  Google Scholar 

  2. C. Bregler and S. M. Omohundro. Nonlinear manifold learning for visual speech recognition. In ¡°Proc. 5th Internat. Conf. Comput. Vision, 1995¡±, 494-499.

    Google Scholar 

  3. K. L. Clarkson, K. Mehlhorn and R. Seidel. Four results on randomized incremental constructions. In “Proc. 9th Ann. Sympos. Theoret. Aspects Comput. Sci., 1992”, 463-474, Lecture Notes in Comput. Sci. 577, Springer-Verlag.

    MathSciNet  Google Scholar 

  4. H. Edelsbrunner. An acyclicity theorem for cell complexes in d dimensions.Combinatorica 10 (1990), 251-260.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graphics 9 (1990), 66-104.

    Article  MATH  Google Scholar 

  6. H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Trans. Graphics 13 (1994), 43-72.

    Article  MATH  Google Scholar 

  7. H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations. In ¡°Proc. 8th Ann. Sympos. Comput. Geom., 1992¡±,43-52.

    Google Scholar 

  8. M. Facello. Geometric Techniques for Molecular Shape Analysis. Ph. D. Thesis, Dept. Comput. Sci., Univ. Illinois, Urbana, 1996.

    Google Scholar 

  9. H. Fuchs, Z. Kedem, and S.P.Uselton. Optimal surface reconstruction from planar contours. Comm. ACM 20 (1977), 693-702.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. J. Giblin. Graphs, Surfaces, and Homology. Second edition, Chapman and Hall, London, 1981.

    MATH  Google Scholar 

  11. H. Hoppe, T. de Rose, T. Duchamp, J. McDonald, and W. St¡§utzle.Surface reconstruction from unorganized points. Computer Graphics, Proc.siggraph 1992, 71-78.404 H. Edelsbrunner

    Article  Google Scholar 

  12. D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane.Geographic Analysis 12 (1980), 205-222.

    Article  Google Scholar 

  13. D. Meyers, S. Skinner and K. Sloan. Surfaces from contours. ACM Trans.Graphics 11 (1992), 228-258.

    Article  MATH  Google Scholar 

  14. J. Milnor. Morse Theory. Annals Math. Studies, Princeton Univ. Press,1963.

    Google Scholar 

  15. R. C. Veltkamp. Closed Object Boundaries from Scattered Points. Springer-Verlag, Berlin, 1994.

    Book  MATH  Google Scholar 

  16. A. Wallace. Differential Topology. First Steps. Benjamin, New York, 1968.

    MATH  Google Scholar 

  17. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22 (1999), 481-504.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Amenta, S. Choi and R. Kolluri. The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19 (2001), 127-153.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva and G. Taubin.The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual.Comput. Graphics 5(1999), 349-359.

    Article  Google Scholar 

  20. F. Bernardini and C. L. Bajaj. Sampling and reconstructing manifolds using α-shapes. In “Proc. 9th Canadian Conf. Comput. Geom., 1997”±, 193-198.

    Google Scholar 

  21. J.-D. Boissonnat and F. Cazals. Smooth surface reconstruction via natural neighbour interpolation of distance functions. In “Proc. 16th Ann. Sympos.Comput. Geom. 2000” 223-232.

    Google Scholar 

  22. B. Curless and M. Levoy. A volumetric method for building complex models from range images. Comput. Graphics, Proc. siggraph 1996, 303-312.

    Google Scholar 

  23. H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological persistence and simplification. Discrete Comput. Geom., to appear.

    Google Scholar 

  24. R. Forman. Combinatorial differential topology and geometry. In New Perspective in Geometric Combinatorics, MSRI Publication 8, 1999, 177-206.

    Google Scholar 

  25. S. Funke and E. A. Ramos. Smooth surface reconstruction in near-linear time. In ¡°Proc. 13th Ann. SIAM-ACM Sympos. Discrete Algorithms, 2002¡±,781-790.

    Google Scholar 

  26. G. Meenakshisundaram. Theory and Practice of Sampling and Reconstruction for Manifolds with Boundaries. Ph. D. Thesis, Dept. Comput. Sci., Univ.North Carolina, Chapel Hill, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Edelsbrunner, H. (2003). Surface Reconstruction by Wrapping Finite Sets in Space. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds) Discrete and Computational Geometry. Algorithms and Combinatorics, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55566-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55566-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62442-1

  • Online ISBN: 978-3-642-55566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics