Skip to main content

Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) for Robots

  • Conference paper
Dynamic Stochastic Optimization

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 532))

Summary

In optimal control of robots, the standard procedure is to determine first off-line an optimal open-loop control, using some nominal or estimated values of the model parameters, and to correct then the resulting increasing deviation of the actual trajectory or the actual performance of the system from the prescribed trajectory, from the prescribed values of performance, resp., by on-line measurement and control actions. However, on-line measurement and control actions are in general very expensive and time consuming. By adaptive optimal stochastic trajectory planning and control (AOSTPC) i.e., by incorporating into the control design the available a priori and sample information about the unknown model parameters using stochastic optimization methods, the mean absolute deviation between the actual and prescribed trajectroy can be reduced cosiderably. Hence, robust optimal controls are obtained. The corresponding feedforward and feedback (PD-) controls are derived by means of stochastic optimzation methods and by using stability requirements. Morever, analytical estimates are given for the reduction of the tracking error, hence, for the reduction of the on-line correction expenses by (AOSTPC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arimoto, S.: Control Theory of Non-Linear Mechanical Systems. Oxford: Clarendon Press, 1996.

    Google Scholar 

  2. Aström, K.J.; Wittenmark, B.: Adaptive Control. Reading, Mass. [etc.]: Addison-Wesley cop., 1995.

    Google Scholar 

  3. Aurnhammer, A.; Marti, K.: OSTP/Fortran-Program For Optimal Stochastic Trajectory Planning of Robots. UniBw München, 2000

    Google Scholar 

  4. Bastian, G. et al. (eds.): Theory of Robot Control. Berlin-Heidelberg-New York: Springer-Verlag, 1996

    Google Scholar 

  5. Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie. Berlin: Walter de Gruyter & Co., 1968

    Google Scholar 

  6. Bernhardt, R.; Albright, S.L.: Robot Calibration. London [etc.]: Chapman and Hall, 1993

    Google Scholar 

  7. Bobrow, J.E.; Dubowsky, S.; Gibson, J.S.: Time-Optimal Control of Robotic Manipulators Along Specified Paths. The Int. J. Of Robotics Research 4, No. 3, pp. 3–17 (1985)

    Google Scholar 

  8. Bobrow, J.E.: Optimal Robot Path Planning Using the Minimum-Time Criterion. IEEE J. of Robotics and Automation 4, No. 4, pp. 443–450 (1988)

    Google Scholar 

  9. Bohlin, R.: Motion Planning for Industrial Robots. Goeteborg: Chalmers Univ., 1999

    Google Scholar 

  10. Chen, Y.-Ch.: Solving Robot Trajectory Planning Problems with Uniform Cubic B-Splines. Optimal Control Applications and Methods 12, pp. 247–262 (1991)

    Google Scholar 

  11. Craig, J.J.: Adaptive Control of Mechanical Manipulators. Reading Mass. (etc.): Addison-Wesley Publ. Company, 1988

    Google Scholar 

  12. Dullerud, G.E.; Paganini, F.: A Course in Robust Control Theory. New York: Springer-Verlag, 2000

    Book  Google Scholar 

  13. Gessner, P.; Spreman, K.: Optimierung in Punktionenräumen. LNMES, Vol. 64. Berlin [etc.]: Springer-Verlag, 1972

    Google Scholar 

  14. Haubach-Lippmann, C.: Stochastische Strukturoptimierung flexibler Roboter. Fortschritt-berichte VDI, Reihe 8, Nr. 706. Düsseldorf: VDI Verlag 1998

    Google Scholar 

  15. Holtgrewe, D.: Adaptive Regelung flexibler Roboter. Paderborn: Igel Verlag, 1996

    Google Scholar 

  16. Hoppen, P.: Autonome mobile Roboter. Mannheim (etc.): B.I. Wissenschaftsverlag, 1992

    Google Scholar 

  17. Hwang, Y.K.; Ahuja, N.: Gross motion planning — a survey. ACM Comp. Survey 24, No. 3, pp. 219–291 (1992)

    Article  Google Scholar 

  18. Isermann, R.: Identifikation dynamischer Systeme. Berlin: Springer-Verlag, 1988

    Book  Google Scholar 

  19. Johanni, R.: Optimale Bahnplanung bei Industrierobotern. Fortschrittberichte VDI, Reihe 18, Nr. 51. Düsseldorf: VDI-Verlag, 1988

    Google Scholar 

  20. Kall, P.: Stochastic Linear Programming. Berlin (etc.): Springer-Verlag, 1976

    Book  Google Scholar 

  21. Kall, P.; Wallace, S.W.: Stochastic Programming. Chichester (etc.): J. Wiley, 1994

    Google Scholar 

  22. Khalil, H.K.: Nonlinear Systems. New York (etc.): Maxmillan Publ. Comp., 1992

    Google Scholar 

  23. Lin, K.: Zur adaptiven und langzeitprädikativen Regelung mit einem statistischen Optimierungskriterium. Dissertation, TU Hamburg-Harburg, 1997

    Google Scholar 

  24. Marti, K.: Approximation stochastischer Optimierungsprobleme. Königstein/Ts.: Hain, 1979

    Google Scholar 

  25. Marti, K.; Kall, P. (eds): Stochastic Programming: Numerical Methods and Engineering Applications. LNEMS, Vol. 423. Berlin (etc.): Springer-Verlag, 1995

    Google Scholar 

  26. Marti, K.; Kall, P. (eds.): Stochastic Programming Methods and Technical Applications. LNEMS, Vol. 458. Berlin-Heidelberg: Springer-Verlag, 1998

    Google Scholar 

  27. Marti, K.; Qu, S.: Optimal Trajectory Planning for Robots under the Consideration of Stochastic Parameters and Disturbances. J. of Intelligent and Robotic Systems 15, pp. 19–23 (1996)

    Article  Google Scholar 

  28. Marti, K.; Qu, S.: Path Planning for Robots by Stochastic Optimization Methods. J. of Intelligent and Robotic Systems 22, pp. 117–127 (1998)

    Article  Google Scholar 

  29. Marti, K.: Path Planning for Robots under Stochastic Uncertainty. Optimization 45, pp. 163–195 (1999)

    Article  Google Scholar 

  30. Marti, K., Qu, S.: Adaptive stochastic path planning for robots-Real-time optimization by means of neural networks. In: M.P. Polis et al. (eds.): Systems Modelling and Optimization, Proceed. 18th TC7 Conference. Boca Raton: Chapman and Hall/CRC Research Notes in Mathematics 1999, pp. 486–494

    Google Scholar 

  31. Miesbach, S.: Bahnföhrung von Robotern mit Neuronalen Netzen. Dissertation, TU Mönchen, Fakultät för Mathematik, 1995

    Google Scholar 

  32. Pai, D.K.; Leu, M.C.: Uncertainty and Compliance of Robot Manipulators with Application to Task Feasibility. The Int. J. of Robotic Research 10, Nor. 3, pp. 200–212 (1991)

    Google Scholar 

  33. Pfeiffer, F.; Johanni, R.: A Concept for Manipulator Trajectory Planning. IEEE J. of Robotics and Automation, Vol. RA-3, No. 2, pp. 115–123 (1987)

    Article  Google Scholar 

  34. Pfeiffer, F.; Reithmeier, E.: Roboterdynamik. Stuttgart: Teubner, 1987

    Google Scholar 

  35. Pfeiffer, R.; Richter, K.: Optimal Path Planning Including Forces at the Gripper. J. of Intelligent and Robotic Systems 3, pp. 251–258 (1990)

    Article  Google Scholar 

  36. Qu, S.: Optimal Bahnplanung unter Berücksichtigung stochastischer Parameterschwankungen. Fortschrittberichte VDI, Reihe 8, Nr. 472. Düsseldorf: VDI-Verlag, 1995

    Google Scholar 

  37. Qu, Z.; Dawson, D.M.: Robust Tracking Control of Robot Manipulators. New York: IEEE Press, 1996

    Google Scholar 

  38. Redfern, D.A., Goh, C.J.: Feedback control of state constrained optimal control problems. In: J. Dolezal; J. Fidler (eds.): System Modelling and Optimization. London (etc.): Chapman and Hall, 1996, pp. 442–449

    Google Scholar 

  39. Reif, K.: Steuerung von nichtlinearen Systemen mit Homotopie-Verfahren. Fortschritt-berichte VDI, Reihe 8: Mess-, Steuerungs-und Regelungstechnik, Nr. 631. Düsseldorf: VDI Verlag, 1997

    Google Scholar 

  40. Schilling, K.; Flury, W.: Autonomy and On-Board Mission Management Aspects for the Cassini Titan Probe. Acta Astronautica 21, No. 1, pp 55–68 (1990)

    Article  Google Scholar 

  41. Schilling, K. et al: The European Development of Small Planetary Mobile Vehicle. Space Technology 17, No. 3/4, pp. 151–162 (1997)

    Article  Google Scholar 

  42. Schilling, R.J.: Fundamentals of Robotics; Analysis and Control. London [etc.]: Prentice Hall, 1990

    Google Scholar 

  43. Schiöder, J.P.: Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung. Dissertation, Universität Bonn, Math.-Naturwissenschaftliche Fakultät, 1988

    Google Scholar 

  44. Schröer, K.: Identifikation von Kalibrierungsparametern kinematischer Ketten. Mönchen-Wien: Carl Hanser, 1993

    Google Scholar 

  45. Sciavicco, L.; Siciliano, B.: Modelling and Control of Robot Manipulators. London [etc.]: Springer-Verlag, 2000

    Book  Google Scholar 

  46. Shin, K.G.; McKay, N.D.: Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints. IEEE Trans. on Automatic Control, Vol. AC-30, pp. 531–541 (1985)

    Article  Google Scholar 

  47. Slotine, J.-J.; Li, W.: Applied Nonlinear Control. Englewood Cliffs, N.J.: Prentice-Hall Int., Inc., 1991

    Google Scholar 

  48. Stengel, R.F.: Stochastic Optimal Control — Theory and Application. New York (etc.): J. Wiley, 1986

    Google Scholar 

  49. Stone, H.W.: Kinematic Modeling, Identification, and Control of Robotic Manipulators. Boston [etc.]: Kluwer Acad. Publ., 1987

    Book  Google Scholar 

  50. Troch, I.: Time-Optimal Path Generation for Continuous and Quasi-Continuous Path Control of Industrial Robots. J. Intelligent and Robotic Systems 2, pp. 1–28 (1989)

    Article  Google Scholar 

  51. Weinmann, A.: Uncertain Models and Robust Control. Wien-New York: Springer-Verlag, 1991

    Book  Google Scholar 

  52. Weinzierl, K.: Konzepte zur Steuerung und Regelung nichtlinearer Systeme auf der Basis der Jacobi-Linearisierung. Aachen: Verlag Shaker, 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marti, K. (2004). Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) for Robots. In: Marti, K., Ermoliev, Y., Pflug, G. (eds) Dynamic Stochastic Optimization. Lecture Notes in Economics and Mathematical Systems, vol 532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55884-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55884-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40506-1

  • Online ISBN: 978-3-642-55884-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics