Skip to main content

A Simple Model of Fads and Cascading Failures on Sparse Switching Networks

  • Conference paper
Economics with Heterogeneous Interacting Agents

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 503))

Abstract

The origin of large but rare cascades that are triggered by small initial shocks is a problem that manifests itself in social and natural phenomena as diverse as cultural fads and business innovations (1–5), social movements and revolutions (6–8), and even cascading failures in large infrastructure networks (9–11). Here we present a possible explanation of such cascades in terms of a network of interacting agents whose decisions are determined by the actions of their neighbors. We identify conditions under which the network is susceptible to very rare, but very large cascades and explain why such cascades may be difficult to anticipate in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arthur W. B. and Lane D. A. Information contagion.Structural Change and Economic Dynamics4(1), 81–103 (1993).

    Article  Google Scholar 

  2. S. Bikhchandani, D. Hirshleifer, I. Welch. A theory of fads, fashion, custom and cultural change as informational cascades.J. Pol. Econ.100(5), 992–1026 (1992).

    Article  Google Scholar 

  3. M. Gladwell.The Tipping Point: How little things make can make a big difference.(Little Brown, New York, 2000).

    Google Scholar 

  4. G. F. Davis, and H. R. Greve. Corporate elite networks and governance changes in the 1980s.American J. Soc.103(1), 1–37 (1997).

    Article  Google Scholar 

  5. T.W. ValenteNetwork Models of the Diffusion of Innovations(Hampton Press, Cresskill, N.J., 1995).

    Google Scholar 

  6. S. Lohmann. The dynamics of informational cascades: the Monday demonstrations in Leipzig, East Germany, 1989–91.World Politics47, 42101 (1994).

    Article  Google Scholar 

  7. N. S. Glance, B. A. Huberman. The outbreak of cooperation.J. Math. Soc.17(4), 281–302 (1993).

    Article  Google Scholar 

  8. M. Granovetter. Threshold models of collective behavior.American J. Soc. 83(6)1420–1443 (1978).

    Article  Google Scholar 

  9. D. N. Kosterev, C. W. Taylor, W. A. Mittelstadt. Model validation for the August 10, 1996 WSCC System Outage.IEEE Trans. on Power Systems. 14(3)967–979 (1999).

    Article  Google Scholar 

  10. M. L. Sachtjen, B. A. Carreras, V. E. Lynch. Disturbances in a power transmission system.Phys. Rev. E. 61(5)4877–4882 (2000).

    Article  Google Scholar 

  11. J. M. Carlson, J. Doyle. Highly optimized tolerance: a mechanism for power laws in designed systems.Phys. Rev. E. 60(2)1412–1427 (1999).

    Article  Google Scholar 

  12. The analysis here assumes synchronous updating of agents, but the results are qualitatively unchanged if an asynchronous, random updating procedure is used instead.

    Google Scholar 

  13. Multimodal distributionsf(Ø)can exhibit stable equilibria that are intermediate between zero and one, but in this case, small shocks will always trigger cascades. In either case, the dynamics of the system is predictable.

    Google Scholar 

  14. D. J. Watts, S. H. Strogatz. Collective dynamics of ‘small-world’ networks.Nature 393440–442 (1998).

    Article  Google Scholar 

  15. A. L. Barabasi, R. Albert. Emergence of scaling in random networks.Science 286509–512 (1999).

    Article  Google Scholar 

  16. L. A. N. Amaral, A. Scala, M. Barthelemy, H. E. Stanley. Classes of behavior of small-world networks.(2000).http://xxx.lanl.gov/abs/cond-mat/0001458

    Google Scholar 

  17. R. Albert, H. Jeong, A. L. Barabasi. Error and attack tolerance of complex networks.Nature406, 378–382 (2000).

    Article  Google Scholar 

  18. R. Cohen, K. Diaz, D. ben-Avraham, S. Havlin. Resilience of the internet to random breakdowns.http://xxx.lanl.gov/abs/cond-mat/0007048

  19. D. B. West.Introduction to Graph Theory(Prentice Hall, Upper Saddle River, NJ, 1996).

    Google Scholar 

  20. J. P. Sethna et al. Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations.Phys. Rev. Lett.70(21), 3347–3350 (1993).

    Article  Google Scholar 

  21. J. Shrager, T. Hogg, B. A. Huberman. Observation of phase transitions in spreading activation networks.Science236, 1092–1094 (1987).

    Article  Google Scholar 

  22. P. Bak, C. Tang, K. Wiesenfeld. Self-organized criticality: an explanation of 1/fnoise.Phys. Rev. Lett.59, 381–384 (1987).

    Article  Google Scholar 

  23. J. Adler. Bootstrap percolation.Physica A171, 453–470 (1991).

    Article  Google Scholar 

  24. S. Solomon, G. Weisbuch, L. de Arcangelis, N. Jan, D. Stauffer. Social percolation models.Physica A277, 239–247 (2000).

    Article  Google Scholar 

  25. C.Moore. Majority-vote cellular automata, Ising dynamics, and p-completeness.J. Stat. Phys. 88(3/4)795–805 (1997).

    Article  Google Scholar 

  26. M. E. J. Newman, S. H. Strogatz, D.J.Watts.On random graphs with arbitrary degree distributions and their applications.(2000).http://xxx.lanl.gov/abs/cond-mat/0007235

  27. D.S. Callaway, M. E. J. Newman, S. H. Strogatz, D. J. Watts. Percolation on random graphs with arbitrary degree distribution.Phys. Rev. Lett.(submitted) Available at (2000).http://xxx.lanl.gov/abs/cond-mat/0007300

  28. H. E. Stanley.Introduction to Phase Transitions and Critical Phenomena(Oxford University Press, Oxford, 1971).

    Google Scholar 

  29. L. Sattenspiel, C. P. Simon, The spread and persistence of infectious diseases in structured populations.Math. Biosci.90, 341–366 (1988).

    Article  Google Scholar 

  30. The author is grateful for the support of A. Lo, and acknowledges D. Callaway, M. Newman, and S. Strogatz for illuminating conversations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watts, D.J. (2001). A Simple Model of Fads and Cascading Failures on Sparse Switching Networks. In: Kirman, A., Zimmermann, JB. (eds) Economics with Heterogeneous Interacting Agents. Lecture Notes in Economics and Mathematical Systems, vol 503. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56472-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56472-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42209-9

  • Online ISBN: 978-3-642-56472-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics