Skip to main content

The Cholesterol-Dependent Cytolysins

  • Chapter
Book cover Pore-Forming Toxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 257))

Abstract

The cholesterol-dependent cytolysins (CDCs) are one of the most widely disseminated toxins known. The toxin gene or the gene product has been identified in numerous species from five different genera of gram-positive bacteria. These genera include Clostridium, Bacillus, Streptococcus, Listeria, and most recently Arcanobacterium. The fact that this gene is so widely distributed among these various pathogenic bacteria suggests that it fills an important role in the pathogenic mechanism of these organisms. The CDCs also exhibit many unique features, including an absolute dependence of their cytolytic activity on the presence of cholesterol in the membrane and the formation of very large oligomeric complexes, and therefore pores, on the membranes of cells. These toxins have been shown to be cytolytic to many eukaryotic cell types, although the bulk of the literature has focused on the hemolytic activity of these toxins. The crystal structure of one CDC has been solved, and experimental approaches combining molecular biology techniques and various biophysical analyses have helped uncover fundamental features by which these toxins assemble and insert into the membrane. Several excellent reviews have been published on these toxins, but this review will focus on recent advances that have elucidated some of the structure-function relationships of CDC toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alouf JE (1999) Introduction to the family of the structurally related cholesterol-binding cytolysins (’sulfhydryl-activated toxins’). In: Alouf J, Freer J (eds) Bacterial toxins: a comprehensive sourcebook. Academic, London, pp 443–456

    Google Scholar 

  • Alouf JE, Geoffroy C (1979) Comparative effects of cholesterol and thiocholesterol on streptolysin O. FEMS Microbiol Lett 6:413–416

    Article  CAS  Google Scholar 

  • Bernheimer AW (1976) Sulfhydryl activated toxins. In: Berheimer AW (ed) Mechanisms in bacterial toxinology. Wiley, New York, pp 85–97

    Google Scholar 

  • Bhakdi S, Tranum JJ, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Weller U, Walev I, Martin E, Jonas D, Palmer M (1993) A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol 182:167–175

    Article  PubMed  CAS  Google Scholar 

  • Billington SJ, Jost BH, Cuevas WA, Bright KR, Songer JG (1997) The Arcanobacterium (Actinomyces) pyogenes hemolysin, pyolysin, is a novel member of the thiol-activated cytolysin family. J Bacteriol 179:6100–6106

    PubMed  CAS  Google Scholar 

  • Boulnois GJ, Mitchell TJ, Saunders FK, Mendez FJ, Andrew PW (1990) Structure and function of pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae. In: Rappuoli R, Alouf JE, Falmagne P, et al. (eds) Bacterial protein toxins. Fischer, Stuttgart, pp 43–51

    Google Scholar 

  • Cowell S, Aschauer W, Gruber HJ, Nelson KL, Buckley JT (1997) The erythrocyte receptor for the channel-forming toxin aerolysin is a novel glycosylphosphatidylinositol-anchored protein. Mol Microbiol 25:343–350

    Article  PubMed  CAS  Google Scholar 

  • Crowley KS, Reinhart GD, Johnson AE (1993) The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Crowley KS, Liao S, Worrell VE, Reinhart GD, Johnson AE (1994) Secretory proteins move through the endoplasmic reticulum membrane via an aqueous, gated pore. Cell 78:461–471

    Article  PubMed  CAS  Google Scholar 

  • Dourmashkin RR, Rosse WF (1966) Morphological changes in the membranes of red blood cells undergoing hemolysis. Am J Med 41:699–710

    Article  PubMed  CAS  Google Scholar 

  • Duncan JL, Schlegel R (1975) Effect of streptolysin O on erythrocyte membranes, liposomes, and lipid dispersions: a protein-cholesterol interaction. J Cell Biol 67:160–174

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy C, Mengaud J, Alouf JE, Cossart P (1990) Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin-O, perfringolysin-O, pneumolysin, and streptolysin-O and contains a single cysteine. J Bacteriol 172:7301–7305

    PubMed  CAS  Google Scholar 

  • Gerlach D, Kohler W, Gunther E, Mann K (1993) Purification and characterization of streptolysin O secreted by Streptococcus equisimilis (group C). Infect Immun 61:2727–2731

    PubMed  CAS  Google Scholar 

  • Gilbert RJ, Heenan RK, Timmins PA, Gingles NA, Mitchell TJ, Rowe AJ, Rossjohn J, Parker MW, Andrew PW, Byron O (1999a) Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering. J Mol Biol 293:1145–1160

    Article  PubMed  CAS  Google Scholar 

  • Gilbert RJC, Jimenez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999b) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655

    Article  PubMed  CAS  Google Scholar 

  • Gordon VM, Nelson KL, Buckley JT, Stevens VL, Tweten RK, Elwood PC, Leppla SH (1999) Clostridium septicum alpha toxin uses GPI-anchored proteins receptors. J Biol Chem 274:27274–27280

    Article  PubMed  CAS  Google Scholar 

  • Haas A, Dumbsky M, Kreft J (1992) Listeriolysin genes: complete sequence of ILO from Listeria ivanovii and of ISO from Listeria seeligeri. Biochim Biophys Acta 1130:81–84

    PubMed  CAS  Google Scholar 

  • Hamman BD, Chen JC, Johnson EE, Johnson AE (1997) The aqueous pore through the translocon has a diameter of 40-60A during cotranslational protein translocation at the ER membrane. Cell 89:535–544

    Article  PubMed  CAS  Google Scholar 

  • Harris RW, Sims PJ, Tweten RK (1991) Kinetic aspects of the aggregation of Clostridium perfringens theta toxin on erythrocyte membranes: a fluorescence energy transfer study. J Biol Chem 266:6936–6941

    PubMed  CAS  Google Scholar 

  • Heuck AP, Hotze E, Tweten RK, Johnson AE (2000) Mechanism of membrane insertion of a multimeric β-barrel protein: Perfringolysin O creates a pore using ordered and coupled conformational changes. Mol Cell 6:1233–1242

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM (1999) Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol Membr Biol 16:145–156 Iwamoto M, Ohno-Iwashita Y, Ando S (1987) Role of the essential thiol group in the thiol-activated cytolysin from Clostridium perfringens. Eur J Biochem 167:425–430

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto M, Ohno-Iwashita Y, Ando S (1990) Effect of isolated C-terminal fragment of thetα-toxin (perfringolysin-O) on toxin assembly and membrane lysis. Eur J Biochem 194:25–31

    Article  PubMed  CAS  Google Scholar 

  • Jacobs T, Darji A, Frahm N, Rohde M, Wehland J, Chakraborty T, Weiss S (1998) Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 28:1081–1089 Jacobs T, Cima-Cabal MD, Darji A, Mendez FJ, Vazquez F, Jacobs AAC, Shimada Y, Ohno-Iwashita Y, Weiss S, de los Toyos JR (1999) The conserved undecapeptide shared by thiol-activated cytolysins is involved in membrane binding. FEBS Lett 459:463–466

    Article  PubMed  CAS  Google Scholar 

  • Kehoe MA, Miller L, Walker JA, Boulnois GJ (1987) Nucleotide sequence of the streptolysin O (SLO) gene: structural homologies between SLO and other membrane-damaging, thiol-activated toxins. Infect Immun 55:3228–3232

    PubMed  CAS  Google Scholar 

  • Moniatte M, van der Goot FG, Buckley JT, Pattus F, van Dorsselaer A (1996) Characterisation of the heptameric pore-forming complex of the Aeromonas toxin aerolysin using MALDI-TOF mass spectrometry. FEBS Lett 384:269–272

    Article  PubMed  CAS  Google Scholar 

  • Nagamune H, Ohnishi C, Katsuura A, Fushitani K, Whiley RA, Tsuji A, Matsuda Y (1996) Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect Immun 64:3093–3100

    PubMed  CAS  Google Scholar 

  • Nagamune H, Whiley RA, Goto T, Inai Y, Maeda T, Hardie JM, Kourai H (2000) Distribution of the intermedilysin gene among the anginosus group streptococci and correlation between intermedilysin production and deep-seated infection with Streptococcus intermedius [In Process Citation]. J Clin Microbiol 38:220–226

    PubMed  CAS  Google Scholar 

  • Nakamura M, Sekino N, Iwamoto M, Ohno-Iwashita Y (1995) Interaction of thetα-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion. Biochemistry 34:6513–6520

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Iwashita Y, Iwamoto M, Mitsui K, Kawasaki H, Ando S (1986) Cold-labile hemolysin produced by limited proteolysis of thetα-toxin horn Clostridium perfringens. Biochemistry 25:6048–6053

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Iwashita Y, Iwamoto M, Mitsui K, Ando S, Nagai Y (1988) Protease nicked q-toxin of Clostridium perfringens, a new membrane probe with no cytolytic effect, reveals two classes of cholesterol as toxinbinding sites on sheep erythrocytes. Eur J Biochem 176:95–101

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Iwashita Y, Iwamoto M, Ando S, Mitsui K, Iwashita S (1990) A modified q-toxin produced by limited proteolysis and methylation: a probe for the functional study of membrane cholesterol. Biochim Biophys Acta 1023:441–448

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Iwashita Y, Iwamoto M, Mitsui K, Ando S, Iwashita S (1991) A cytolysin, thetα-toxin, preferentially binds to membrane cholesterol surrounded by phospholipids with 18-carbon hydrocarbon chains in cholesterol-rich region. J Biochem (Tokyo) 110:369–375

    CAS  Google Scholar 

  • Olofsson A, Hebert H, Thelestam M (1993) The projection structure of perfringolysin-O (Clostridium Perfringens thetα-toxin). FEBS Lett 319:125–127

    Article  PubMed  CAS  Google Scholar 

  • Olson R, Nariya H, Yokota K, Kamio Y, Gouaux E (1999) Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat Struct Biol 6:134–140

    Article  PubMed  CAS  Google Scholar 

  • Owen RH, Boulnois GJ, Andrew PW, Mitchell TJ (1994) A role in cell-binding for the C-terminus of pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae. FEMS Lett 121:217–21

    Article  CAS  Google Scholar 

  • Palmer M, Saweljew P, Vulicevic I, Valeva A, Kehoe M, Bhakdi S (1996) Membrane-penetrating domain of streptolysin O identified by cysteine scanning mutagenesis. J Biol Chem 271:26664–26667

    Article  PubMed  CAS  Google Scholar 

  • Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605

    Article  PubMed  CAS  Google Scholar 

  • Panchal RG, Bayley H (1995) Interactions between residues in staphylococcal alpha-hemolysin revealed by reversion mutagenesis. J Biol Chem 270:23072–6

    Article  PubMed  CAS  Google Scholar 

  • Parker MW, Buckley JT, Postma JPM, Tucker AD, Leonard K, Pattus F, Tsernoglou D (1994) Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367:292–295

    Article  PubMed  CAS  Google Scholar 

  • Pedelacq JD, Maveyraud L, Prévost G, Baba-Moussa L, Gonzale A, Courcelle E, et al. (1999) The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the watersoluble species of a family of transmembrane pore-forming toxins. Struct Fold Des 7:277–287

    Article  CAS  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  PubMed  CAS  Google Scholar 

  • Pinkney M, Beachey E, Kehoe M (1989) The thiol-activated toxin streptolysin O does not require a thiol group for activity. Infect Immun 57:2553–2558

    PubMed  CAS  Google Scholar 

  • Prigent D, Alouf JE (1976) Interaction of streptolysin O with sterols. Biochim Biophys Acta 433:422–428

    Google Scholar 

  • Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692

    Article  PubMed  CAS  Google Scholar 

  • Rottem S, Cole RM, Habig WH, Barile MF, Hardegree MC (1982) Structural characteristics of tetanolysin and its binding to lipid vesicles. J Bacteriol 152:888–892

    PubMed  CAS  Google Scholar 

  • Saunders KF, Mitchell TJ, Walker JA, Andrew PW, Boulnois GJ (1989) Pneumolysin, the thiol-activated toxin of Streptococcus pneumoniae, does not require a thiol group for in vitro activity. Infect Immun 57:2547–2552

    PubMed  CAS  Google Scholar 

  • Sekino-Suzuki N, Nakamura M, Mitsui KI, Ohno-Iwashita Y (1996) Contribution of individual tryptophan residues to the structure and activity of thetα-toxin (perfringolysin O), a cholesterol-binding cytolysin. Eur J Biochem 241:941–947

    Article  PubMed  CAS  Google Scholar 

  • Sekiya K, Satoh R, Danbara H, Futaesaku Y (1993) A ring-shaped structure with a crown formed by streptolysin-O on the erythrocyte membrane. J Bacteriol 175:5953–5961

    PubMed  CAS  Google Scholar 

  • Sekiya K, Danbara H, Yase K, Futaesaku Y (1996) Electron microscopic evaluation of a two-step theory of pore formation by streptolysin O. J Bacteriol 178:6998–7002

    PubMed  CAS  Google Scholar 

  • Sellman BR, Kagan BL, Tweten RK (1997) Generation of a membrane-bound, oligomerized prepore complex is necessary for pore formation by Clostridium septicum alpha toxin. Mol Microbiol. 23:551–558

    Article  PubMed  CAS  Google Scholar 

  • Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol dependent cytolysin: a novel paradigm for poreforming toxins. Cell 99:293–299

    Article  PubMed  CAS  Google Scholar 

  • Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an ot-helical to p-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574

    Article  PubMed  CAS  Google Scholar 

  • Shepard LA, Shatursky O, Johnson AE, Tweten RK (2000) The mechanism of assembly and insertion of the membrane complex of the cholesterol-dependent cytolysin perfringolysin O: formation of a large prepore complex. Biochemistry 39:10284–10293

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Nakamura M, Naito Y, Nomura K, Ohno-Iwashita Y (1999) C-terminal amino acid residues are required for the folding and cholesterol binding property of perfringolysin O, a pore-forming cytolysin. J Biol Chem 274:18536–42

    Article  PubMed  CAS  Google Scholar 

  • Song LZ, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Tweten RK (1988) Nucleotide sequence of the gene for perfringolysin O (thetα-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Infect Immun 56:3235–3240

    PubMed  CAS  Google Scholar 

  • Tweten RK, Harris RW, Sims PJ (1991) Isolation of a tryptic fragment from Clostridium perfringens q-toxin that contains sites for membrane binding and self-aggregation. J Biol Chem 266:12449–12454

    PubMed  CAS  Google Scholar 

  • Van der Goot FG, Pattus F, Wong KR, Buckley JT (1993) Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers. Biochemistry 21:2636–2642

    Article  Google Scholar 

  • Walker JA, Allen RL, Falmagne P, Johnson MK, Boulnois GJ (1987) Molecular cloning, characterization, and complete nucleotide sequence of the gene for pneumolysin, the sulfhydryl-activated toxin of Streptococcus pneumoniae. Infect Immun 55:1184–1189

    PubMed  CAS  Google Scholar 

  • Watson KC, Kerr EJ (1974) Sterol structural requirements for inhibition of streptolysin O activity. Biochem J 140:95–98

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tweten, R.K., Parker, M.W., Johnson, A.E. (2001). The Cholesterol-Dependent Cytolysins. In: van der Goot, F.G. (eds) Pore-Forming Toxins. Current Topics in Microbiology and Immunology, vol 257. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56508-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56508-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62545-9

  • Online ISBN: 978-3-642-56508-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics