Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 142))

Abstract

Our understanding of the biology of major biogeochemical cycles came initially from, and is still based upon, field observations (Bolin et al. 1979; Clark and Rosswall 1981; Apps and Price 1996). This is in contrast to very advanced models, which explore the physics of the climate system and are based on laws of physics or chemistry with a mechanistic understanding of the underlying processes (Houghton et al. 1996; Bengtsson 1999). For the biologist, the responses of organisms reach far beyond physicochemical reactions, and they include genetically regulated changes in physiological pathways or activation of enzyme systems as part of acclimations and adaptations that are coupled with climate and species composition changes. Generic predictions thus remain elusive because there are too many species and pathways. Although climate greatly influences the biogeochemical cycles, models that include biology thus remain at a correlative level. Moreover, the cycling of elements like carbon (C) cannot readily be separated from the abundance, state and cycles of other elements, especially nitrogen (N) (Schulze et al. 1994) which, in turn, is tied to the cycling of other elements (Ulrich 1987). Nevertheless, detailed knowledge of the biology of C cycling and that of other major and minor elements is urgently needed because the Kyoto Protocol demands strategies to balance industrial emissions by biological C fixation (WBGU 1998; IGBP 1998). By this protocol, mankind is taking a first step to deliberately engineer the biology of the global C cycle; but without full understanding of the underlying processes, there is a risk of serious deleterious side effects (Schellnhuber and Wenzel 1998; Schellnhuber 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nutrition of ectomycorrhizal plants. I. Utilisation of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493

    Article  CAS  Google Scholar 

  • Apps MJ, Price DT (1996) Forest ecosystems, forest management and the global carbon cycle. NATO ASI Series I: Global environmental change. Springer, Berlin Heidelberg New York, 452 pp

    Google Scholar 

  • Bengtsson L (1999) From short-range barometric modelling to extended-range global weather predictions: a 40-year perspective. Tellus 51A-B:13–32

    Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Bolin B, Degens ET, Kempe S, Ketner P (1979) The global carbon cycle. SCOPE 13,491 pp

    Google Scholar 

  • Chapin FS III, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Clark FE, Rosswall T (1981) Terrestrial nitrogen cycles. Ecol Bull (Stockholm) 33,714 pp

    Google Scholar 

  • Havel L, Durzan DJ (1996) Aptosis in plants. Bot Acta 109:268–277

    CAS  Google Scholar 

  • Houghton JT, Filho LGM, Callander BA, Harris N, Kattenberg A, Maskell K (1996) Climate change 1995. The science of climate change. Cambridge University Press, Cambridge, 572 pp

    Google Scholar 

  • IGBP Terrestrial Carbon Working Group (1998) The terrestrial carbon cycle: implications for the Kyoto protocol. Science 280:1393–1394

    Article  Google Scholar 

  • Koch GW, Scholes RJ, Steffen WL, Vitousek PM, Walker BH (1995) The IGBP terrestrial transects: science Plan. IGBP Report No 36, IGBP Secretariat, Stockholm

    Google Scholar 

  • Leopold AC (1980) Aging and senescence in plant development. In: Thimann KV (ed) Senescence in plants. CRC Press, Boca Raton, pp 1–13

    Google Scholar 

  • Melillo J, Prentice C, Schulze E-D, Farquahr G, Sala O (1996) Terrestrial ecosystems: Respiration to global environmental change and feedbacks to climate. IPCC Chap 9:445–482

    Google Scholar 

  • Meyer O (1993) Functional groups of microorganisms. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Ecological studies 99. Springer, Berlin Heidelberg New York, pp 67–96

    Google Scholar 

  • Monsi M, Saeki T (1953) Ãœber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjönaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145–147

    Article  CAS  Google Scholar 

  • Naesholm T, Ekblad A, Nordin A, Giesler R, Hoegberg M, Hoegberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Schellnhuber HJ (1999) Globales Umweltmanagement oder Dr. Lovelock übernimmt Dr. Frankensteins Praxis. In: Jahrbuch Ökologie. CH Beck, München, pp 168–187

    Google Scholar 

  • Schellnhuber HJ, Wenzel V (1998) Earth system analysis. Springer, Berlin Heidelberg New York, 530 pp

    Book  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego, 588 pp

    Google Scholar 

  • Schulze E-D (1994) Flux control at the ecosystem level. TREE 10:40–43

    Google Scholar 

  • Schulze E-D, Chapin FS III (1987) Plant specialization to environments of different resource availability. In: Schulze E-D, Zwolfer H (eds) Potentials and limitations of ecosystem analysis. Ecological studies 61. Springer, Berlin Heidelberg New York, PP 120–148

    Google Scholar 

  • Schulze E-D, Heimann M (1998) Carbon and water exchange of terrestrial systems. In: Galloway J, Melillo J (eds) Asian change in the context of global climate change. Cambridge University Press, Cambridge, IGBP Book Ser 4:145–161

    Google Scholar 

  • Schulze E-D, Ulrich B (1991) Acid rain — a large-scale, unwanted experiment in forest ecosystems. SCOPE 45:89–106

    CAS  Google Scholar 

  • Schulze E-D, Kelliher FM, Korner Ch, Lloyd J, Leuning R (1994) Relationships between plant nitrogen nutrition, carbon assimilation rate, and maximum stomatal and ecosystem surface conductance for evaporation. A global ecological scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, 605 pp

    Google Scholar 

  • Stanners D, Bourdeau (1995) Europe’s environment. The Dobris assessment. European Environmental Agency, Copenhagen, 676 pp

    Google Scholar 

  • Stitt M, Schulze E-D (1994) Plant growth, storage, and resource allocation: from flux control in a metabolic chain to the whole-plant level. In: Schulze E-D (ed) Flux control in biological systems. Academic Press, San Diego, pp 57–118

    Google Scholar 

  • Teller A, Mathy P, Jeffers JNR (1992) Responses of forest ecosystems to environmental change. Elsevier Applied Science, London, 1009 pp

    Google Scholar 

  • Ulrich B (1987) Stability, elasticity, and resilience of terrestrial ecosystems with respect to matter balance. In: Schulze E-D, Zwolfer H (eds) Potentials and limitations of ecosystem analysis. Ecological Studies 61. Springer, Berlin Heidelberg New York, pp 11–49

    Chapter  Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilgaard K, Lindroth A, Grelle A, Bernhofer Ch, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik Ãœ, Berbigier P, Lousteau D, Gudmundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Montcrieff J, Montagnani L, Minerbi S, Jarvis PG (1999) Respiration is the main determinant of European forest Carbon balance. Nature (in press)

    Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ 22:179–187

    Article  CAS  Google Scholar 

  • WBGU (1998) The accounting of biological sinks and sources under the Kyoto protocol: a step forward or backward for global environmental protection? German Advisory Council on Global Change. Special Report 1998,75 pp WBGU Secretariat, Bremerhaven

    Google Scholar 

  • Zech W, Kogel-Knabner I (1994) Patterns and regulation of organic matter transformation in soils: litter decomposition and humification. In: Schulze E-D (ed) Flux control in biological systems. Academic Press, San Diego, pp 303–334

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulze, ED. (2000). The Carbon and Nitrogen Cycle of Forest Ecosystems. In: Schulze, ED. (eds) Carbon and Nitrogen Cycling in European Forest Ecosystems. Ecological Studies, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57219-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57219-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67239-5

  • Online ISBN: 978-3-642-57219-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics