Skip to main content

Constraints on underspecified target trajectories

  • Conference paper
Robots and Biological Systems: Towards a New Bionics?

Part of the book series: NATO ASI Series ((volume 102))

  • 674 Accesses

Abstract

Much of the recent interest in artificial neural networks is founded on the development of supervised learning algorithms for nonlinear problems [1, 30, 39, 42, 47]. These algorithms, the most well-known being backpropagation, are able to model a large class of nonlinear transformations by assigning credit to internal “hidden” units. The remaining units—those connected directly to the environment—are generally assumed to be provided with target states. This assumption appears to be a liability; it is by no means clear that such desired outputs can always be provided. Consider, for example, a network serving as a feedforward controller for a robot. Such a network must produce torques as a function of the environmental goal and the current state of the robot. In general, however, the environment provides only the goal and not the torques that achieve the goal. Furthermore, if we assume the existence of an oracle that provides the torques as training data, then there appears to be little reason (other than perhaps speed) not to use the oracle as the controller in place of the network.

This project was supported in part by BRSG 2 S07 RR07047-23 awarded by the Biomedicai Research Support Grant Program, Division of Research Resources, National Institutes of Health and by a grant from Siemens Corporation. The results presented in this paper appeared previously in Jordan (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D. H., Hinton G. E., & Sejnowski T. J. (1985). A learning algorithm for Boltz-mann machines. Cognitive Science, 9, 147–169.

    Article  Google Scholar 

  2. Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.), Handbook of physiology-The nervous system II. Bethesda, MD: American Physiological Society.

    Google Scholar 

  3. Atkeson, C. G. & Reinkensmeyer, D. (1988). Using associative content-addressable memories to control robots. IEEE Conference on Decision and Control. San Francisco, CA.

    Google Scholar 

  4. Barto, A. G. (1989). Connectionist learning for control. Proceedings of the NSF Workshop on Application of Neural Networks to Robotics and Control. Cambridge: MIT Press.

    Google Scholar 

  5. Berkenblit, M. B., Fel’dman, A. G. & Fucson, O. I. (1986). Adaptability of innate motor patterns and motor control. Behavioral and Brain Sciences, 9, 585–638.

    Article  Google Scholar 

  6. Bizzi, E., Accornero, N., Chappie, W., & Hogan, N. (1984). Posture control and trajectory formation during arm movement. Journal of Neuroscience, 4, 2738–2745.

    Google Scholar 

  7. Eccles, J. C. (1977). The Understanding of the Brain. New York: McGraw-Hill.

    Google Scholar 

  8. Fel’dman, A. G. (1980). Superposition of motor programs. I. Rhythmic forearm movements in man. Neuroscience, 5, 544–548.

    Google Scholar 

  9. Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of Human Learning. New York: Academic Press.

    Google Scholar 

  10. Flash, T. (1987). The control of hand equilibrium trajectories in multi-joint arm movements. Biological Cybernetics, 57, 257–274.

    Article  MATH  Google Scholar 

  11. Flash, T. & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience, 5, 1688–1703.

    Google Scholar 

  12. Greene, P. H. (1982). Why is it easy to control your arms? Journal of Motor Behavior, 9, 2–42.

    Google Scholar 

  13. Gurfinkel, V. S., & Levik, Y. S. (1979). Sensory complexes and sensorimotor integration. Fiziologiya Cheloveka, 5, 399–414.

    Google Scholar 

  14. Hinton, G. E. (1986). A network which learns distributed representations of concepts. Proceedings of the Eighth Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  15. Hogan, N. (1984). An organising principle for a class of voluntary movements. Journal of Neuroscience, 4, 2745–2754.

    Google Scholar 

  16. Hogan, N. (1985). Impedance control: An approach to manipulation: Part I-Theory. ASME Journal of Dynamic Systems, Measurement, and Control, 107, 1–24.

    Article  MATH  Google Scholar 

  17. Jakobson, R., Fant, G., & Halle, M. (1951). Preliminaries to speech analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  18. Jordan, M. I. (1988). Supervised learning and systems with excess degress of freedom. (COINS Tech. Rep. 88-27). Amherst, MA: University of Massachusetts, Computer and Information Sciences.

    Google Scholar 

  19. Jordan, M. I. (1990). Motor learning and the degrees of freedom problem. In M. Jean-nerod, ed. Attention and Performance, XIII. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  20. Jordan, M. I. (in press). Serial order: A parallel, distributed processing approach. In J. L. Elman and D. E. Rumelhart, (Eds). Advances in Connectionist Theory: Speech. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  21. Jordan, M. I. & Rosenbaum, D. A. (1990). Action. In M. I. Posner (Ed.), Foundations of Cognitive Science. Cambridge, MA: MIT Press.

    Google Scholar 

  22. Jordan, M. I. & Rumelhart, D. E. (1990). Supervised learning with a distal teacher. Submitted to: Cognitive Science.

    Google Scholar 

  23. Kawato, M. (1990). Computational schemes and neural network models for formation and control of multijoint arm trajectory. Proceedings of the NSF Workshop on Application of Neural Networks to Robotics and Control. Cambridge: MIT Press.

    Google Scholar 

  24. Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57, 169–185.

    Article  MATH  Google Scholar 

  25. Kelso, J. A. S. & Holt, K. G. (1980). Exploring a vibratory systems analysis of human movement production. Journal of Neurophysiology, 43, 1183–1196.

    Google Scholar 

  26. Kent, R. D. & Minifie, F. D. (1977). Coarticulation in recent speech production models. Journal of Phonetics, 5, 115–117.

    Google Scholar 

  27. Kiparsky, P. (1975). Comments on the role of phonology in language. In J. F. Kavanagh & J. E. Cutting (Eds.), The Role of Speech in Language. Cambridge: MIT Press.

    Google Scholar 

  28. Koditschek, D. E. (1984). Natural control of robot arms. IEEE Proceedings of the 23rd Conference on Decision and Control, pp. 733–735.

    Google Scholar 

  29. Kuperstein, M. (1987). Adaptive visual-motor coordination in multijoint robots using parallel architecture. IEEE Conference on Robotics and Automation, pp. 1595–1602.

    Google Scholar 

  30. LeCun, Y. 1985. A learning scheme for asymmetric threshold networks. Proceedings of Cognitiva 85. Paris, France.

    Google Scholar 

  31. Lieberman, P. (1975). On the origins of language: An introduction to the evolution of speech. New York: Macmillan.

    Google Scholar 

  32. Lindblom, B. (1983). Economy of speech gestures. In P. F. MacNeilage (Ed.), The Production of Speech. New York: Springer-Verlag.

    Google Scholar 

  33. Lindblom, B., Lubker, J., & Gay, T. (1979). Formant frequencies of some fixed-mandible vowels and a model of speech motor programming by predictive simulation. Journal of Phonetics, 7, 147–161.

    Google Scholar 

  34. Martinet, A. (1968). Phonetics and linguistic evolution. In B. Malmberg, (Ed.), Manual of Phonetics. Amsterdam: North-Holland.

    Google Scholar 

  35. Miller, W. T. (1987). Sensor-based control of robotic manipulators using a general learning algorithm. IEEE Journal of Robotics and Automation, 3:157–165.

    Article  Google Scholar 

  36. Mussa-Ivaldi, F. A., McIntyre, J., & Bizzi, E. (1988). Theoretical and experimental perspectives on arm trajectory formation: A distributed model for motor redundancy. In E. Clementi & S. Chin (Eds.) Biological and Artificial Intelligence Systems. Escom.

    Google Scholar 

  37. Nguyen, D., & Widrow, B. (1988). Personal communication.

    Google Scholar 

  38. Öhman, S. E. G. (1966). Coarticulation in VCV utterances: spectrographic measurements. Journal of the Acoustical Society of America, 39, 151–168.

    Article  Google Scholar 

  39. Parker, D. 1985. Learning-logic. (Tech. Rep. TR-47). Cambridge, MA: MIT Sloan School of Management.

    Google Scholar 

  40. Pineda, F. J. (1987). Generalization of backpropagation to recurrent and higher order neural networks. Proceedings of the IEEE Conference of Neural Information Processing Systems, Palo Alto: Morgan Kaufmann.

    Google Scholar 

  41. Polit, A. & Bizzi, E. (1978). Processes controlling arm movements in monkeys. Science, 201, 1235–1237.

    Article  Google Scholar 

  42. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Volume 1. Cambridge, MA: MIT Press.

    Google Scholar 

  43. Salisbury, J. K. (1980). Active stiffness control of a manipulator in Cartesian coordinates. Proceedings of the 19th IEEE Conference on Decision and Control, 95–100.

    Google Scholar 

  44. Saltzman, E. L. & Kelso, J.A. S. (1987). Skilled actions: A task-dynamic approach. Psychological Review, 94, 84–106.

    Article  Google Scholar 

  45. Saltzman, E. L. & Munhall, K. G. (1988). A dynamical approach to gestural patterning in speech production. Submitted to Ecological Psychology.

    Google Scholar 

  46. Uno, Y., Kawato, M., & Suzuki, R. (1987). Formation of optimum trajectory in control of arm movementminimum torque-change model (Japan IEICE Tech. Rep. MBE 86–79). Osaka, Japan.

    Google Scholar 

  47. Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Unpublished doctoral dissertation, Harvard University.

    Google Scholar 

  48. Werbos, P. (1987). Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics, 11, 7–20.

    Article  Google Scholar 

  49. Widrow, B. & Stearns, S. D. (1985). Adaptive signal processing. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  50. Williams, R. J. & Zipser, D. (1988). A learning algorithm for continually running fully recurrent neural networks. (Tech. Rep. ICS 8805). University of California, San Diego, Institute for Cognitive Science.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jordan, M.I. (1993). Constraints on underspecified target trajectories. In: Dario, P., Sandini, G., Aebischer, P. (eds) Robots and Biological Systems: Towards a New Bionics?. NATO ASI Series, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58069-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58069-7_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63461-1

  • Online ISBN: 978-3-642-58069-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics