Skip to main content

Meso- and Micro-Scale Frontiers of Compact Heat Exchangers

  • Chapter
Applied Optical Measurements

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

By their very nature, compact heat exchangers allow an efficient use of material, volume and energy in thermal systems. These benefits have driven heat exchanger design toward higher compactness, and the trend toward ultra-compact designs will continue. Highly compact surfaces can be manufactured using micromachining and other modern technologies. In this paper, unresolved thermalhydraulic issues related to ultra-compact designs will be discussed and the status of the technologies required for the production of ultra-compact structured surfaces will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams T.M, Abdel-Khalik SI, Jeter SM, Qureshi ZH (1998) An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transfer 41(6): 851–857

    Article  Google Scholar 

  2. Akers WW, Deans HA, Crosser OK (1959) Condensation heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55(29): 171–176

    Google Scholar 

  3. Bau HH, Ananthasuresh SGK, Santiago-Aviles JJ, Zhong J, Kim M, Yi M, Espinoza Vallejos P, Sola-Laguna L (1998) Ceramic tape-based meso systems technology. In the Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, Anaheim, CA, Nov. 1998

    Google Scholar 

  4. Becker EW, Ehrfèld W, Hagmann P, Maner A, Munchmeyer D (1986) Fabrication of mi crostructures with high aspect ratios and great structural heights by synchrotron radiation lithographs, galvanoforming, and plastic moulding (LIGA process). Microelectronic Engi neering 4: 35–56

    Article  Google Scholar 

  5. Bowers MB, Mudawar I (1994) High flux boiling in low flow rate, low pressure drop mini channel and microchannel heat sinks. Int. J. Heat Mass Transfer 37(2): 321–332.

    Article  Google Scholar 

  6. Campbell GO, Sherman MM, Estes EA, Hassapis CV (1995) Metal microchannel coolers for high heat flux applications. SAE 951442, presented at the SAE Aerospace Atlantic Con ference, Dayton OH

    Google Scholar 

  7. Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind. Eng., Chem., Proc. Design and Dev., 5(3): 322–339

    Article  Google Scholar 

  8. Choi SB, Barron RF, Warrington RO (1991) Liquid flow and heat transfer in microtubes. In Choi et al. (eds.), Micromechanical Sensors, Actuators and Systems, ASME DSC 32: 123–134

    Google Scholar 

  9. Gad-el-Hak M (1998) The fluid mechanics of microdevices. Based on the fourteenth Free man lecture presented at the 1998 ASME/WAM

    Google Scholar 

  10. Ikuta K, Hirowatari K, Ogata T (1994) Three dimensional integrated fluid systems (MIFS) fabricated by stereo lithography. IEEE International Workshop on Micro Electro Mechani cal Systems, MEMS 94, Oiso, Japan, pp. 1–6

    Google Scholar 

  11. Kim M, Yi M, Zhong J, Bau HH, Hu H, Ananthasuresh SGK (1998) The fabrication of flow conduits in ceramic tapes and the measurement of fluid flow through these conduits. In Pro ceedings of the 1998 ASME International Congress and Exposition, Anaheim, CA

    Google Scholar 

  12. Kuo C, Masuzawa T, Fujino M (1991) A micropipe fabrication process. In Proceedings of IEEE Micro Electro Mechanical Systems Conference, Nara, Japan, pp. 80–85

    Google Scholar 

  13. Madou M (1997) Fundamentals of microfabrication, CRC Press LLC

    Google Scholar 

  14. Mala GM, Li D, Werner C, Jacobasch HJ and Ning YB (1997) Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. International Journal of Heat and Fluid Flow 18: 489–496

    Article  Google Scholar 

  15. Peng XF, Peterson GP, Wang BX (1994) Frictional flow characteristics of water flowing through rectangular microchannels. Experimental Heat Transfer 7: 249–264

    Article  Google Scholar 

  16. Peng XF, Peterson GP, Wang BX (1994) Heat transfer characteristics of water flowing through microchannels. Experimental Heat Transfer 7: 265–283

    Article  Google Scholar 

  17. Peng XF, Peterson GP, Wang BX (1996) Flow boiling of binary mixtures in mierochan neled plates. Int. J. Heat Mass Transfer 39(6): 1257–1264

    Article  Google Scholar 

  18. Peng XF, Hu HY, Wang BX. (1998) Boiling nucleation during liquid flow in microchan nels. Int. J. Heat Mass Transfer 41(1): 101–106

    Article  MATH  Google Scholar 

  19. Pfahler J, Harley J, Bau HH, Zemel J (1991) Gas and liquid flow in small channels, in Choi D et al. (eds.), Micromechanical Sensors, Actuators and Systems, ASME DSC 32: 49–60

    Google Scholar 

  20. Philips RJ (1990) MicroChannel heat sinks. In: Bar-Cohen A, Kraus AD (eds) Advances in thermal modeling of electronic components and systems. ASME press New York, vol 2, chap 3

    Google Scholar 

  21. Ravigururajan TS (1998) Impact of channel geometry on two-phase flow heat transfer char acteristics of refrigerants in microchannel heat exchangers. ASME J. Heat Transfer 120: 485–491

    Article  Google Scholar 

  22. Shah MM (1979) A general correlation for heat transfer during film condensation in tubes. Int. J. Heat Mass Transfer 22(4): 547–556

    Article  Google Scholar 

  23. Tong W, Bergles AE, Jensen MK (1997) Pressure drop with highly subcooled flow boiling in small-diameter tubes. Exp. Thermal Fluid Sci. 15: 202–212

    Article  Google Scholar 

  24. Tuckerman DB, Pease RFW (1981) High-Performance heat sinking for VLSI. IEEE Elec tron Device Letters EDL. 2(5): 126–129

    Article  Google Scholar 

  25. Wang BX, Peng XF (1994) Experimental investigation on liquid forced-convection heat transfer through microchannels. Int. J. Heat Mass Transfer 37(1): 73–82

    Article  Google Scholar 

  26. Webb RL, Zhang M (1997) Heat transfer and friction in small diameter channels. Presented at the Workshop on Thermophysical Phenomena in Microscale Sensors, Devices and Structures, 1997 National Heat Transfer Conference, Baltimore, Maryland

    Google Scholar 

  27. Wu P, Little WA (1983) Measurement of friction factors for the flow of gases in the fine channels used for microminiature Joule-Thomson refrigerators. Cryogenics 23: 273–277

    Article  Google Scholar 

  28. Wu P, Little WA (1984) Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators. Cryogenics 24: 415–420

    Article  Google Scholar 

  29. Yang C, Li D, Masliyah JH (1998) Modeling forced liquid convection in rectangular micro channels with electrokinetic effects. International Journal of Heat and Mass Transfer 41: 4229–4249

    Article  MATH  Google Scholar 

  30. Yang C, Webb RL (1996a) Condensation of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. Int. J. Heat Mass Transfer 39(4): 791–800

    Article  Google Scholar 

  31. Yang C, Webb RL (1996b) Friction pressure drop of R-12 in small hydraulic diameter ex truded aluminum tubes with and without micro-fins. Int. J. Heat Mass Transfer 39(4): 801–809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehendale, S.S., Jacobi, A.M., Shah, R.K. (1999). Meso- and Micro-Scale Frontiers of Compact Heat Exchangers. In: Lehner, M., Mewes, D. (eds) Applied Optical Measurements. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58496-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58496-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63620-2

  • Online ISBN: 978-3-642-58496-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics