Skip to main content

Reassessing Foraminiferal Stable Isotope Geochemistry: Impact of the Oceanic Carbonate System (Experimental Results)

  • Chapter
Use of Proxies in Paleoceanography

Abstract

Laboratory experiments with living planktic foraminifers show that the δ13C and δ18O values of shell calcite decrease with increasing sea water pH and/or carbonate ion concentration. The effect has been quantified in symbiotic (Orbulina universa) and non-symbiotic (Globigerina bulloides) species and is independent of symbiont activity and temperature. It is concluded that a kinetic fractionation process affects both the carbon and oxygen isotopic composition of the shell simultaneously. At present it cannot be determined definitively whether the relationship is controlled by the pH dependent balance between hydration and hydroxylation of CO2 or by [CO3 2-] related variations in the calcification rate. However, independent of which factor ultimately controls the relationship between the carbonate chemistry and isotopic fractionation, in the real ocean [CO3 2-] and pH covary linearly across the relevant pH range. The true relationship between shell isotopic composition and the bulk carbonate chemistry is masked by the fact that host respiration and symbiont activity locally modify the carbonate system. Respiration lowers and photosynthesis increases ambient pH and [CO3 2-]. This translates into modified absolute shell values but leaves the slope between the shell isotopic composition and the bulk carbonate chemistry unaffected. A second level of shell isotopic modification is introduced by the incorporation of respired carbon, enriched in 12C, which depletes the shell δ13C value. In symbiont bearing species this depletion is partially negated by a shell δ13C enrichment in the light. As an alternative to the RUBISCO hypothesis (enrichment via preferential removal of 12CO2), we propose that scavenging of respired CO2 during photosynthesis, raises the shell δ13C value. Our results have partly been documented before (Spero et al. 1997) and demonstrate that the carbonate chemistry is undoubtedly a major control on temporal geochemical variability in the fossil record. For instance, the sea water carbonate system of the pre-Phanerozoic world (Berner 1994; Grotzinger and Kasting 1993) or during glacials (Sanyal et al. 1995) was significantly different from today confounding direct interpretation of foraminiferal stable isotope data using existing relationships (see companion paper in this volume by Lea et al.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard E, Arnold M, Duprat J, Moyes J, Duplessy JC (1987) Reconstruction of the last deglaciation: deconvolved records of δ18O profiles, micropaleontological variations and accelerator mass spectrometric C-14 dating. Clim Dyn 1987 (1): 101–112

    Google Scholar 

  • Bé AWH (1979) Planktonic foraminifera: Ultrastructural changes caused by calcification during gametogenesis in Globigerinoides sacculifer (Brady). Geol Soc Am Abstracts wit. programs 11: 385–386

    Google Scholar 

  • Bé AWH (1980) Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Mar Micropaleontol 5:283–310

    Google Scholar 

  • Bé AWH (1982) Biology of planktonic foraminifera. In: Broadhead TW (ed) Foraminifera: notes for a short course. Department of Geological Sciences, Knoxville, Tennessee, pp 51–92

    Google Scholar 

  • Bé AWH, Anderson OR (1976) Gametogenesis in planktonic foraminifera. Science 192(1-3): 890–892

    Google Scholar 

  • Bé AWH, Anderson OR, Faber WW Jr (1983) Sequence of morphological and cytoplasmic changes during gametogenesis in the planktonic foraminifer Globigerinoides sacculifer (Brady). Micropaleontology 29(3): 310–325

    Google Scholar 

  • Bé AWH, Hemleben C, Anderson OR, Spindler M, (1979) Chamber formation in planktonic foraminifera. Micropaleontology 25(3): 294–306

    Google Scholar 

  • Bé AWH, Hemleben C, Anderson OR, Spindler M, Hacunda J, Tuntivate-Choy S (1977) Laboratory and field observations of living planktonic foraminifera. Micropaleontology 23(2): 155–179

    Google Scholar 

  • Bé AWH, Hutson WH (1977) Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean. Micropaleontology 23(4): 369–414

    Google Scholar 

  • Bé AWH, Tolderlund DS (1971) Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In: Funnel BM, Riedel WR (eds) The micropaleontology of oceans. Cambridge Univ Press, pp 105–149

    Google Scholar 

  • Bemis BE, Spero HJ, Bijma J, Lea DW (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13(2): 150–160

    Google Scholar 

  • Berger WH (1979) Stable isotopes in foraminifera. In: Lipps JH, Berger WH, Buzas MA, Douglas RG, Ross CA (eds) Foraminiferal ecology and paleoecology (SEPM short course No. 6). Society of Economic Paleontologists and Mineralogists, Houston, Texas, pp 156–197

    Google Scholar 

  • Berger WH, Killingley JS, Vincent E (1978) Stable isotopes in deep-sea carbonates: Box Core ERDC-92 west equatorial Pacific. Oceanol Acta 1(2): 203–216

    Google Scholar 

  • Berner RA (1994) Geocar II: A revised model of Atmospheric CO2 over Phanerozoic time. Amer J Sci 294: 56–91

    Google Scholar 

  • Bijma J, Erez J, Hemleben C (1990) Lunar and semi-lunar reproductive cycles in some spinose planktonic foraminifers. J Foram Res 20(2): 117–127

    Google Scholar 

  • Bijma J, Hemleben C, Huber BT, Erlenkeuser H, Kroon D (1998) Experimental determination of the ontogenetic stable isotope variability in two morphotypes of Globigerinella siphonifera (d’Orbigny). Mar Micropaleonto 135:141–160

    Google Scholar 

  • Bouvier-Soumagnac Y, Duplessy JC (1985) Carbon and oxygen isotopic composition of planktonic foraminifera from laboratory culture, plankton tows and recent sediment: Implications for the reconstruction of paleoclimatic conditions and of the global carbon cycle. J Foram Res 15(4): 302–320

    Google Scholar 

  • Bouvier-Soumagnac Y, Duplessy JC, Bé AWH (1986) Isotopic composition of a laboratory cultured planktonic foraminifer Orbulina universa. Implications for paleoclimatic reconstructions. Oceanol Acta 9(4): 519–522

    Google Scholar 

  • Boyle EA (1990) Quaternary deepwater paleoceanography. Science 249(4971): 863–870

    Google Scholar 

  • Broecker WS (1971) A kinetic model for the chemical composition of sea water. Quat Res 1:188–207

    Google Scholar 

  • Broecker WS (1973) Factors controlling CO2 content in the oceans and atmosphere. Carbon and the biosphere: AEC symposium 30:32–50

    Google Scholar 

  • Broecker WS (1981) Glacial to interglacial changes in ocean and atmosphere chemistry. In: Berger A (ed) Climatic variations and variability: Facts and Theories. Reidel, Dordrecht, pp 109–120

    Google Scholar 

  • Broecker WS, Maier-Reimer E (1992) The influence of air and sea exchange on the carbon isotope distribution in the sea. Global Biogeochem Cycles 6(3): 315–320

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York, pp 1–690

    Google Scholar 

  • Broecker WS, Van Donk J (1970) Insolation changes, ice volumes, and the O18-record in deep-sea cores. Reviews of Geophysics and Space Physics 8(1): 169–198

    Google Scholar 

  • Buchardt B, Hansen HJ (1977) Oxygen isotope fractionation and algal symbiosis in benthic foraminifera from the Gulf of Elat, Israel. Bull Geol Soc Denmark 26:185–194

    Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface water. In: Bleil U, Thiede J (eds) Geological history of the polar oceans: Arctic versus Antarctic. NATO ASI Series C 308, Kluwer, Dordrecht, pp 519–538

    Google Scholar 

  • Charles CD, Fairbanks RG (1992) Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355:416–419

    Google Scholar 

  • Charles CD, Wright JD, Fairbanks RG (1993) Thermodynamic influences on the marine carbon isotope record. Paleoceanography 8:691–697

    Google Scholar 

  • Cummings CE, McCarty HB (1982) Stable carbon isotope ratios in Astrangia danae: evidence for algal modification of carbon pools used in calcification. Geochim Cosmochim Acta 46(6): 1125–1129

    Google Scholar 

  • Curry WB, Matthews RK (1981a) Equilibrium 18O fractionation in small size fraction planktic foraminifera: Evidence from recent Indian Ocean sediments. Mar Micropaleontol 6:327–337

    Google Scholar 

  • Curry WB, Matthews RK (1981b) Paleo-oceanographic utility of oxygen isotopic measurements on planktic foraminifera: Indian Ocean core-top evidence. Palaeogeogr Paleoclimatol Palaeoecol 33 (13): 173–192

    Google Scholar 

  • Duplessy JC (1978) Isotope studies. In: Gribbin J (ed) Climatic change. Cambridge University Press, Cambridge, pp 46–67

    Google Scholar 

  • Duplessy JC, Bé AWH, Blanc PL (1981) Oxygen and carbon isotopic composition and biogeographic distribution of planktonic foraminifera in the Indian Ocean. Palaeogeogr Paleoclimatol Palaeoecol 33 (1-3): 9–46

    Google Scholar 

  • Duplessy JC, Lalou C, Vinot-Bertouille AC (1970) Differential isotopic fractionation in benthic foraminifera and paleotemperature, reassesed. Science 168:250–251

    Google Scholar 

  • Emiliani C (1954) Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. Amer J Sci 252:149–158

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1951) Carbonate-water isotopic temperature scale. Geol Soc Amer Bull 62:417–426

    Google Scholar 

  • Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Amer Bull 64:1315–1325

    Google Scholar 

  • Erez J (1978a) The influence of differential production and dissolution of the stable isotope composition of planktonic foraminifera. Ph D Thesis, Woods Hole-MIT joint program, pp 1–119

    Google Scholar 

  • Erez J (1978b) Vital effect on stable-isotope composition seen in foraminifera and coral skeletons. Nature 273(5659): 199–202

    Google Scholar 

  • Erez J, Luz B (1983) Experimental paleotemperature equation for planktonic foraminifera. Geochim Cosmochim Acta 47(6): 1025–1031

    Google Scholar 

  • Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Google Scholar 

  • Fairbanks RG, Charles CD, Wright JD (1992) Origin of global meltwater pulses. In: Taylor RE, Long A, Kra RS (eds) Radiocarbon after four decades. Springer, Berlin Heidelberg New York, pp 473–500

    Google Scholar 

  • Fairbanks RG, Sverdlove MS, Free R, Wiebe PH, Bé AWH (1982) Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298:841–844

    Google Scholar 

  • Fairbanks RG, Wiebe PH, Bé AWH (1980) Vertical distribution and isotopic composition of living planktonic foraminifera in the western north Atlantic. Science 207:61–63

    Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JH (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9: 121–137

    Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stableisotope fractionation factors of geochemical interest, Data of Geochemistry. Geol Surv Prof Pap, Washington

    Google Scholar 

  • Goreau TF (1963) Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef builders. Ann Ny Acad Sci 109:127–167

    Google Scholar 

  • Goreau TJ (1977) Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in montastrea annularis. Proc Roy Soc London, Ser B 196: 291–315

    Google Scholar 

  • Grotzinger JP, Kasting JF (1993) New Constraints on Precambrian ocean composition. J Geol 101:235–243

    Google Scholar 

  • Hemleben C, Spindler M (1983) Recent advances in research on living planktonic foraminifera. Utrecht MicropaleontolBull 30:141–170

    Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, Berlin Heidelberg New York, pp 1–363

    Google Scholar 

  • Hemleben C, Spindler M, Breitinger I, Deuser WG (1985) Field and laboratory studies on the ontogeny and ecology of some globorotaliid species from the Sar-gasso Sea off Bermuda. J Foram Res 15(4): 254–272

    Google Scholar 

  • Hemleben C, Spindler M, Breitinger I, Ott R (1987) Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Mar Micropaleontol 12(4): 305–324

    Google Scholar 

  • Hut G (1987) Consultants group meeting on stable isotope reference samples for geochemical and hydrological investigations. Rep to Dir Gen, Int At, Energy Agency, Vienna, pp 1–42

    Google Scholar 

  • Jørgensen BB, Erez J, Revsbech NP, Cohen Y (1985) Symbiotic photosynthesis in a planktonic foraminifera, Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol Oceanogr 30(6): 1253–1267

    Google Scholar 

  • Kahn MI, Williams DF (1981) Oxygen and carbon isotopic composition of living planktonic foraminifera from the northeast Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 33(1-3): 47–76

    Google Scholar 

  • Kallel N, Labeyrie LD, Leclerc AJ, Duplessy JC (1988) A deep hydrological front between intermediate and deep-water masses in the glacial Indian Ocean. Nature 333:651–655

    Google Scholar 

  • Kiddon J, Bender ML, Orchardo J, Caron DA, Goldmann JC, Dennett M (1993) Isotopic fractionation of oxygen by respiring marine organisms. Global Biogeochem Cycles 7(3): 679–694

    Google Scholar 

  • Kuile Bt, Erez J, Padan E (1989) Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera. Mar Biol 103:241–251

    Google Scholar 

  • Labeyrie LD, Duplessy JC, Blanc PL (1987) Variation in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327: 477–482

    Google Scholar 

  • Land LS, Lang JC, Barnes DJ (1977) On the stable carbon and oxygen isotopic composition of some shallow water ahermatypic, scleractinian coral skeletons. Geochim Cosmochim Acta 41:169–172

    Google Scholar 

  • Lane GA, Dole M (1956) Fractionation of oxygen isotopes during respiration. Science 123: 574–577

    Google Scholar 

  • Lea DW, Martin& PA, Chan DA, Spero HJ (1995) Calcium uptake and calcification rate in the planktonic foraminifer Orbulina universa. J Foram Res 25(1): 14–23

    Google Scholar 

  • Lynch-Stieglitz J, Stocker TF, Broecker WS, Fairbanks R (1995) The influence of air-sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Global Biogeochem Cycles 9(4): 653–665

    Google Scholar 

  • Mackensen A, Hubberten H-W, Bickert T, Fischer G, Fütterer DK(1993) The δ13C inbenthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ13C of dissolved inorganic carbon in Southern Ocean Deep Water: Implications for glacial ocean circulation models. Paleoceanography 8(5): 587–610

    Google Scholar 

  • McConnaughey T (1989a) 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects. Geochim Cosmochim Acta 53: 163–171

    Google Scholar 

  • McConnaughey T (1989b) 13C and 18O isotopic disequilibrium in biological carbonates. I. Patterns. Geochim Cosmochim Acta 53(1): 151–162

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. Chem Physics 18:849–857

    Google Scholar 

  • Mix AC (1987) The oxygen-isotope record of glaciation. In: Ruddiman WF, Wright HEJ (eds) North America and adjacent oceans during the last deglaciation. The Geology of North America. Geol Soc Amer, Boulder, pp 111–135

    Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Google Scholar 

  • Naidu PD, Malmgren BA (1996a) A high-resolution record of late Quaternary upwelling along the Oman Margin, Arabian Sea based on planktonic foraminifera. Paleoceanography 11(1): 129–140

    Google Scholar 

  • Naidu PD, Malmgren BA (1996b) Relationship between late Quaternary upwelling history and coiling properties of Neogloboquadrina pachyderma and Globigerina bulloides in the Arabian Sea. J Foram Res 26(1): 64–70

    Google Scholar 

  • Revelle R, Fairbridge RW (1957) Carbonates and carbon dioxide. In: Hedgpeth JW (ed) Treatise on marine ecology and paleoecology, Vol 1, ecology. Geol Soc Amer Mem, pp 239–296

    Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R(1993) Isotopic Patterns in Modern Global Precipation. Geophys Monogr 78:1–35

    Google Scholar 

  • Sanyal A, Hemming NG, Hanson GN, Broecker WS (1995) Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373(6511): 234–236

    Google Scholar 

  • Sautter LR, Thunell RC (1989) Seasonal succesion of planktonic foraminifera: results from four-year time series sediment trap experiment in the northeast Pacific. J Foram Res 19(4): 253–267

    Google Scholar 

  • Sautter LR, Thunell RC (1991) Planktonic foramini-feral response to upwelling and seasonal hydrographic conditions: sediment trap results from San Pedro Basin, southern California Bight. J Foram Res 21 (4): 347–363

    Google Scholar 

  • Sautter, RL, Sancetta C (1992) Seasonal associations of phytoplankton and planktic foraminifera in an upwelling region and their contribution to the seafloor. Mar Micropaleontol 18:263–278

    Google Scholar 

  • Schiebel R, Bijma J, Hemleben C (1997) Population dynamics of the planktic foraminifer Globigerina bulloides from the North Atlantic. Deep-Sea Res 44(9-10): 1701–1713

    Google Scholar 

  • Schrag DP, Hampt G, Murray DW (1996) Pore fluid constraints on the temperature and oxygen isotope composition of the glacial ocean. Science 272:1930–1932

    Google Scholar 

  • Shackleton NJ (1967) Oxyge. isotope analysis and Pleistocene temperatures re-assessed. Nature 215: 15–17

    Google Scholar 

  • Shackleton NJ (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. In: Labeyrie J (ed) Les méthodes quantitatives d’étude des variations du climat au cours du pléistocène. CNRS, Paris, pp 203–209

    Google Scholar 

  • Shackleton NJ(1977) Carbon-13 in Uvigerina: Tropical rainforest history and the Equatorial Pacific carbonate dissolution cycles. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum, New York, pp 401–427

    Google Scholar 

  • Shackleton NJ, Wiseman JDH and Buckley HA (1973) Non-equilibrium isotopic fractionation between seawater and planktonic foraminiferal tests. Nature 242:177–179

    Google Scholar 

  • Spero HJ (1986) Symbiosis, chamber formation and stable isotope incorporation in the planktonic foraminifer Orbulina universa. PhD Thesis, Univ California, Santa Barbara, pp 1–222

    Google Scholar 

  • Spero HJ (1988) Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminifer Orbulina universa. Mar Biol 99(1): 9–20

    Google Scholar 

  • Spero HJ (1992) Do planktic foraminifera accurately record shifts in the carbon isotopic composition of seawater ∑CO2? Mar Micropaleontol 19:275–285

    Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration of foraminiferal carbon and oxygen isotopes. Nature 390(6659): 497–500

    Google Scholar 

  • Spero HJ, DeNiro MJ (1987) The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite. Symbiosis 4:213–228

    Google Scholar 

  • Spero HJ, Lea DW (1993) Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer. Results from laboratory experiments. Mar Micropaleontol 22(3): 221–234

    Google Scholar 

  • Spero HJ, Lea DW (1996) Experimental determination of stable isotope variability in Globigerina bulloides: Implications for paleoceanographic reconstructions. Mar Micropaleontol 28(3-4): 231–246

    Google Scholar 

  • Spero HJ, Lerche I, Williams DF (1991) Opening the carbon isotope “vital effect” black box, 2. Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6:639–655

    Google Scholar 

  • Spero HJ, Parker SL (1985) Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. J Foram Res 15(4): 273–281

    Google Scholar 

  • Spero HJ, Williams DF (1988) Extracting environmental information from planktonic foraminiferal δ13C data. Nature 335(6192): 717–719

    Google Scholar 

  • Spero HJ, Williams DF (1989) Opening the carbon isotope “vital effect” black box, 1. Seasonal temperatures in the euphotic zone. Paleoceanography 4(6): 593–601

    Google Scholar 

  • Spindler M, Hemleben C (1980) Symbionts in planktonic foraminifera (protozoa). Endocytobiology, endosymbiosis and cell biology 1: 133–140

    Google Scholar 

  • Spindler M, Hemleben C, Salomons JB, Smit LP (1984) Feeding behavior of some planktonic foraminifers in laboratory cultures. J Foram Res 14(4): 237–249

    Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: A review. Earth-Sci Rev 19(1): 51–80

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc London: 562–581

    Google Scholar 

  • Usdowski E, Hoefs J (1993) Oxygen isotope exchange between carbonic acid, bicarbonate, carbonate, and water; a re-examination of the data of McCrea (1950) and an expression for the overall partitioning of oxygen isotopes between the carbonate species and water. Geochim Cosmochim Acta 57(15): 3815–3818

    Google Scholar 

  • Usdowski E, Michaelis J, Böttcher ME, Hoefs J (1991) Factors for the oxygen isotope equilibrium fractionation between aqueous CO2, carbonic acid, bicarbonate, carbonate and water (19 °C). Z Phys Chem 170:237–249

    Google Scholar 

  • Vergnaud-Grazzini C (1976) Non-equilibrium isotopic compositions of shells of planktonic foraminifera in the mediterranean sea. Palaeogeogr Palaeoclimatol Palaeoeco 120(4): 263–276

    Google Scholar 

  • Weber JN, Woodhead PMJ (1970) Carbon and oxygen isotope fractionation in the skeletal carbonate of reef building corals. Chem Geol 6:93–123

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Mar Geol 100:207–248

    Google Scholar 

  • Weger HG, Herzig R, Falkowski PG, Turpin DH (1989) Respiratory losses in the light in a marine diatom: Measurements by short-term mass spectrometry. Limnol Oceanogr 34(7): 1153–1161

    Google Scholar 

  • Williams DF, Bé AWH, Fairbanks RG (1979) Seasonal oxygen isotopic variations in living planktonic foraminifera off Bermuda. Science 206(4417): 447–449

    Google Scholar 

  • Williams DF, Bé AWH, Fairbanks RG (1981a) Seasonal stable isotopic variations in living planktonic from Bermuda plankton tows. Palaeogeogr Palaeoclimatol Palaeoecol 33(1-3): 71–102

    Google Scholar 

  • Williams DF, Röttger R, Schmaljohann R, Keigwin LD (1981b) Oxygen and carbon isotopic fractionation and algal symbiosis in the benthic foraminifera Heterostegina depressa. Palaeogeogr Palaeoclimatol Palaeoecol 33(1-3): 231–252

    Google Scholar 

  • Wolf-Gladrow DA, Bijma J, Zeebe RE (1999) Model simulation of the carbonate system in the microenvironment of symbiont bearing foraminifera. Mar Chem 64:181–198

    Google Scholar 

  • Zahn R, Mix AC (1991) Benthic foraminiferal δ18O in the ocean’s temperature-salinity-density field: constraints on ice age thermohaline circulation. Paleoceanography 6(1): 1–20

    Google Scholar 

  • Zeebe RE, Bijma J, Wolf-Gladrow DA (1999) A diffusionreaction model of carbon isotope fractionation in foraminifera. Mar Chem 64:199–227

    Google Scholar 

  • Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochim Cosmochim Acta 59(1): 107–114

    Google Scholar 

  • Zimmermann MA, Williams DF, Röttger R (1983) Symbiont-influenced isotopic disequilibrum in Heterostegina depressa. J Foram Res 13(2): 115–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bijma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bijma, J., Spero, H.J., Lea, D.W. (1999). Reassessing Foraminiferal Stable Isotope Geochemistry: Impact of the Oceanic Carbonate System (Experimental Results). In: Fischer, G., Wefer, G. (eds) Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58646-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58646-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63681-3

  • Online ISBN: 978-3-642-58646-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics