Skip to main content

Thermal History of Sedimentary Basins

  • Chapter
Petroleum and Basin Evolution

Abstract

Geoscientists have always been interested in temperature values, as the crucial role of temperature in various geological, geochemical, and geophysical phenomena was recognized relatively early. However, this interest was long limited to aspects such as temperature distribution in the earth’s crust and mantle, melting temperatures of different rocks, equilibrium temperatures of various metamorphic mineral assemblages, and temperature dependency of some geophysical parameters. Almost all of these are related to thermal conditions in the deeper parts of the earths crust. Low temperature fields at shallow depth have been of less concern. It is interesting to recognize that all these studies sought to define either the present distribution of temperature or the maximum temperature reached at some time in the geological past. In other words, temperature distribution as a steady state case was the subject of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PA, Allen JR (1990) Basin analysis, principles and applications. Blackwell, Oxford

    Google Scholar 

  • Andrews Speed CP, Oxburgh ER, Cooper BA (1984) Temperatures and depth-dependent heat flow in western North Sea. AAPG Bull 68: 1764–1781

    Google Scholar 

  • Arie K, Gutdeutsch R, Klinger G, Lenhardt W (1987) Seismological studies in the eastern Alps. In: Flügel HW, Faupl P (eds) Geodynamics in the Eastern Alps. Deuticke, Wien, pp 325–333

    Google Scholar 

  • Barnard PC, Cooper BS (1983) A review of geochemical data related to the northwest European gas province. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Pergamon Press, Oxford, pp 19–33

    Google Scholar 

  • Bethke CM (1985) A numerical model of compaction driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sediment basins. J Geophys Res 90: 6817–6828

    Google Scholar 

  • Bjoerlykke K (1993) Fluid flow in sedimentary basins. Sediment Géol 86: 137–158

    Google Scholar 

  • Bjoerlykke K, Mo A, Palm E (1988) Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions. Mar Petrol Geol 5: 338–351

    Google Scholar 

  • Bodri L, Bodri B (1985) On the correlation between heat flow and crustal thickness, vol 120. Elsevier, Amsterdam, pp 69–81

    Google Scholar 

  • Buntebarth G, Stegena L (1986) Paleogeothermics: evaluation of geothermal conditions in the geological past. Lecture Notes in Earth Sciences 5. Springer, Berlin Heidelberg New York, 234 pp

    Google Scholar 

  • Burrus J, Bessis F (1986) Thermal modeling in the Provencal Basin (NW-Mediterranean). In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris

    Google Scholar 

  • Burruss RC (1987) Diagenetic paleotemperature from aqueous fluid inclusions. Miner Mag 51: 477–481

    Google Scholar 

  • Burst JP (1969) Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration. AAPG Bull 53: 73–77

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford, 510 pp

    Google Scholar 

  • Chapman RE (1981) Geology and water. Developments in applied earth sciences, 1. Nijhoff-Junk, The Hague, 228 pp

    Google Scholar 

  • Clauser C (1984) A climatic correction on temperature gradients using surface-temperature series of various periods. Tectonophysics 103: 33–46

    Google Scholar 

  • Doligez B, Bessis F, Burrus J, Ungerer P, Chenet PY (1986) Integrated numerical simulation of the sedimentation, heat transfer, hydrocarbon formation and fluid migration in a sedimentary basin: the Themis model. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris

    Google Scholar 

  • Ebner F, Sachsenhofer RF (1995) Paleogeography, subsidence and thermal history of the Neogene Styrian basin (Pannonian basin system, Austria). Tectonophysics 242(1–2): 133– 150

    Google Scholar 

  • Eckert ERG, Drake RM (1987) Analysis of heat and mass transfer. Springer, Berlin Heidelberg New York, 806 pp

    Google Scholar 

  • Ellis A, Mahon WAJ (1977) Chemistry and geothermal systems. Academic Press, New York, 392 pp

    Google Scholar 

  • Frakes LA (1979) Climates throughout geologic time. Elsevier, Amsterdam, 310 pp

    Google Scholar 

  • Frakes LA, Probst J-L, Ludwig W (1994) Latitudinal distribution of paleotemperature on land and sea from Early Cretaceous to Middle Miocene. CR Acad Sci Paris 318,11: 1209–1218

    Google Scholar 

  • Gleadow AJW, Duddy IR, Lovering JF (1983) Fission track analysis: a new tool for the evolution of thermal histories and hydrocarbon potential. APEA J 23: 93–102

    Google Scholar 

  • Gosnold WD, Fisher DW (1986) Heat flow studies in sedimentary basins. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris

    Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Lovering JF (1989) Apatite fission track analysis as a peleotemperature indicator for hydrocarbon exploration. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins - methods and case histories. Springer, New York, pp 181–195

    Google Scholar 

  • Gretener PE (1981) Geothermics: using temperature in hydrocarbon exploration. AAPG Education Course Note Series 17

    Google Scholar 

  • Haack U (1982) Radioactivity of rocks. In: Angenheister G (ed) Physical properties of rocks, vol lb. Springer, Berlin Heidelberg New York, pp 433–481

    Google Scholar 

  • Habicht JKA (1979) Paleoclimate, paleomagnetism, and continental drift. AAPG Stud Geol 9: 31

    Google Scholar 

  • Haenel R (1971) Bestimmungen der terrestrischen Waermestromdichte in Deutschland. Z Geophys 37: 119–134

    Google Scholar 

  • Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG, Smith DG (1989) A geological time scale. Cambridge University Press, Cambridge, 263 pp

    Google Scholar 

  • Hermanrud C (1986) On the importance to the petroleum generation of heating eltects trom compaction-derived water: an example from the northern North Sea. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris

    Google Scholar 

  • Hermanrud C (1993) Basin modelling techniques - an overview. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Q (eds) Basin modelling: advances and applications. NPF Spec Pubi 3. Elsevier, Amsterdam, pp 1–34

    Google Scholar 

  • Heynisch S, Yalcin MN, Wygrala BP, Dohmen L, Messner J, Welte DH (1987) Two-dimensional modeling of the profile 56T 8606-205, 1205 in the Northern Central Graben Area, IES GmbH (unpublished)

    Google Scholar 

  • Hoefs J (1987) Stable isotope geochemistry, 3rd edn. Springer, Berlin Heidelberg New York, 241 pp

    Google Scholar 

  • Huntsberger TL, Lerche I (1987) Determination of paleo heat-flux from fission scar tracks in apatite. J Petrol Geol 10 (4): 365–394

    Google Scholar 

  • Jensen RP, Doré AG (1993) A recent Norwegian shelf heating event - fact or fantasy. In: Dore AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Q (eds) Basin modelling: advances and applications. NPF Spec Pubi 3. Elsevier, Amsterdam, pp 85–106

    Google Scholar 

  • Jüntgen H (1964) Reaktionskinetischen Überlegungen zur Deutung von Pyrolyse-Reaktionen. Erdöl Kohle Erdgas Petrocheml7: 180–186

    Google Scholar 

  • Jüntgen H, Klein J (1975) Entstehung von Erdgas aus kohligen Sedimenten. Erdöl Kohle-Erdgas Petrochem 28: 6573

    Google Scholar 

  • Jüntgen H, van Heek KH (1968) Gas release from coal as a function of rate of heating. Fuel 47: 103–117

    Google Scholar 

  • Kappelmeyer O, Haenel R (1974) Geothermics with special reference to application. Gebrueder Borntraeger, Berlin, 240 pp

    Google Scholar 

  • Karweil J (1956) Die Metamorphose der Kohlen vom Standpunkt der physikalischen Chemie. Z Dtsch Geol Ges 107: 132–139

    Google Scholar 

  • Karweil J (1975) The determination of paleotemperatures from the optical reflectance of coaly particles. In: Alpern B (ed) Pétrographie de la matiere organique des sediments. CNRS, Paris, pp 195–203

    Google Scholar 

  • Kettel D (1981) Maturitätsberechnung für das nordwestdeutsche Oberkarbon - ein lest verschiedener Methoden. Erdöl-Erdgas 97, 11: 395–404

    Google Scholar 

  • Kingston DR, Dishroon CP, Williams PA (1983a) Global basin classification system. AAPG Bull 67: 2175–2193

    Google Scholar 

  • Kingston DR, Dishroon CP, Williams PA (1983b) Hydrocarbons plays and global basin classification. Bull AAPG 67: 2194–2198

    Google Scholar 

  • Kübler B (1967) La cristallinite de l’illite et les zones tout a fait superieures du métamorphisme: etages tectoniques. Colloq Neuchatel, pp 105–122

    Google Scholar 

  • Kurat G, Palme H, Spettel B, Baddenhausen H, Hofmeister H, Palme C, Wanke H (1980) Geochemistry of ultramafic xenoliths from Kapfenstein, Austria: evidence for a variety of upper mantle processes. Geochim Cosmochim Acta 44: 45–60

    Google Scholar 

  • Lee WHK (1963) Heat flow data analysis. Rev Geophys 1: 449–479

    Google Scholar 

  • Leischner K (1994) Kalibration simulierter Temperaturgeschichten von Gesteinen mit organischen Reifeparametern und anorganischen Temperaturindikatoren. Dissertation, University of Bochum, Ber. Forschungszentrum Jülich, 2909: 309 pp

    Google Scholar 

  • Leischner K, Welte DH, Littke R (1993) Fluid inclusions and organic maturity parameters as calibration tools in basin modelling. In: Doré AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Q (eds) Basin modelling: advances and applications. NPF Spec Pubi 3. Elsevier, Amsterdam, pp 161–172

    Google Scholar 

  • Lerche I (1993) Theoretical aspects of problems in basin modelling. In: Dore AG, Augustson JH, Hermanrud C, Stewart DJ, Sylta Q (eds) Basin modelling: advances and applications. NPF Spec Pubi 3. Elsevier, Amsterdam, pp 35–65

    Google Scholar 

  • Lerche I, Yarzab RF, Kendall CGStC (1984) Determination of paleoheat flux from vitnnite reflectance data. AAPG Bull 68: 1704–1717

    Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as factors in coalification. Akad Nauk bbbK Izvestiya, Seriya Geologicheskaya 3: 95–196 (in Russian)

    Google Scholar 

  • Luheshi MN, Jackson D (1986) Conductive and convective heat transfer in sedimentary basins. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris

    Google Scholar 

  • MacDonald GFJ (1959) Calculations on the thermal history of the earth. J Geophys Res 64 (11): 1967–2000

    Google Scholar 

  • Majorowicz JA, Jones FW, Lam HL, Jessop AM (1984) The variability of heat flow both regional and with depth in southern Alberta, Canada: Effect of groundwater flow?: Tectonophysics 106: 1–29

    Google Scholar 

  • Majorowicz JA, Jones FW, Jessop AM (1986) Geothermics of the Williston Basin in Canada in relation to hydrodynamics and hydrocarbon occurrences. Geophysics 51 (3): 767–779

    Google Scholar 

  • Mathieu Y (1984) Estimation des conductivites thermiques de quelques roches en fonction de leur enfouissement: Inst Fr Pet Rep 32199: 39

    Google Scholar 

  • McKenzie DP (1978) Some remarks on the development of sedimentary basins. Earth Planet Sci Lett 40: 25–32

    Google Scholar 

  • McKenzie DP (1981) The variation of temperature with time and hydrocarbon maturation in sedimentary basins formed by extension. Earth Planet Sci Lett 55: 87–98

    Google Scholar 

  • Meyerhoff AA (1970) Continental drift: implications of paleomagnetic studies, meteorology, physical oceanography, and climatology. AAPG Bull 78: 1–51

    Google Scholar 

  • Mo ES, Havik T, Throndsen T, Kjeller P, Andresen P, Backström SA (1989) A dynamic deterministic model of hydrocarbon generation in the Midgard field drainage area offshore Mid-Norway. Geol. Rundsch 78 /1: 305–317

    Google Scholar 

  • Mongelli F, Loddo M, Tramacere A (1982) Thermal conductivity, diffusivity and specific heat variation of some Travale field (Tuscany) rocks versus temperature. Tectonophysics 83: 33–43

    Google Scholar 

  • Morin R, Silva AJ (1984) The effects of high pressure and high temperature on physical properties of ocean sediments. J Geophys Res 89: 511–526

    Google Scholar 

  • Morin R, Silva AJ (1984) The effects of high pressure and high temperature on physical properties of ocean sediments. J Geophys Res 89: 511–526

    Google Scholar 

  • Novelli L, Welte DH, Mattavelli L, Yalçin MN, Cinelli D, Schmitt KJ (1988) Hydrocarbon generation in southern Sicily - a three dimensional computer aided basin modeling study. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 141–151

    Google Scholar 

  • Okay AI, Sengör AMC, Görür N (1994) Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22: 267–270

    Google Scholar 

  • Oudin JL (1984) Thermal maturation indices in geochemistry. In: Durand B (Ed) Thermal phenomena in sedimentary basins. Technip, Paris, pp 117–125

    Google Scholar 

  • Oxburgh ER, Turcotte DL (1974) Thermal gradients and regional metamorphism in overthrust terrains with special reference to the eastern Alps. Schweiz Mineral Petrogr Mitt 54: 641–662

    Google Scholar 

  • Palciauskas VV (1986) Models for thermal conductivity and permeability in normally compacting basins. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, pp 323–336

    Google Scholar 

  • Parrish JT, Ziegler AM, Scotese CR (1982) Rainfall patterns and the distributions of coals and evaporites in the Mesozoic and Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 40: 67–101

    Google Scholar 

  • Pereira EB, Hamza VM, Furtado VV, Adams JAS (1986) U, Th and K content, heat production and thermal conductivity of Sao Paulo, Brazil, continental shelf sediments: a reconnaissance work. Chem Geol 58: 217–226

    Google Scholar 

  • Philippi GT (1965) On the depth, time and mechanism of petroleum generation. Geochim Cosmochim Acta 29: 1021–1049

    Google Scholar 

  • Prezbindowski DR, Tapp JP (1991) Dynamics of fluid inclusion alteration in sedimentary rocks: a review and discussion. Org Geochem 17: 131–142

    Google Scholar 

  • Pytte AM, Reynolds RC (1989) The thermal transformation of smectite to illite. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins - methods and case histories. Springer, New York, pp 133 – 140

    Google Scholar 

  • Roedder E, Bodnar RJ (1980) Geologic pressure determinations from fluid inclusion studies. Annu Rev Earth Planet Sci 8: 263–301

    Google Scholar 

  • Rohsenow WM, Hartnett JP (1973) Handbook of heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Royden L (1986) A simple method for analyzing subsidence and heat flow in extensional basins. In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, pp 49–73

    Google Scholar 

  • Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appi Geophys 114: 309–317

    Google Scholar 

  • Rybach L (1986) Amount and significance of radioactive heat sources in sediments In: Burrus J (ed) Thermal modeling in sedimentary basins. Editions Technip, Paris, pp 311–322

    Google Scholar 

  • Rybach L, Cermak V (1982) Radioactive heat generation in rocks. In: Angenheister G (ed) Physical properties of rocks, vol lb. Springer, Berlin Heidelberg New York, pp 353–371

    Google Scholar 

  • Sachsenhofer RF (1994) Petroleum generation and migration in the Stynan Basin (Pannonian Basin system, Austria): an integrated organic geochemical and numeric modelling study. Mar Petrol Geol 11: 684–701

    Google Scholar 

  • Schmucker U (1969) Conductivity anomalies, with special reference to the Andes. In: Kunœrn SK (ed) The application of modern physics to the earth and planetary interiors. Wiley- Interscience, London, pp 125–138

    Google Scholar 

  • Schulz R (1989) Temperaturverteilung in Nordwestdeutschland (Abstract). Nachrichten Dtsch Geolog Ges 41: 72

    Google Scholar 

  • Schwarzbach M (1974) Das Klima der Vorzeit – eine Einführung in die Palaoklimatologie, 3. Aufl. Enke, Stuttgart

    Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching; an explanation of the Post-Mid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85: 3711–3739

    Google Scholar 

  • Sharp JM Jr, Domenico PA (1976) Energy transport in thick sequences of compacting sediments. Geol Soc Am Bull 87: 390–400

    Google Scholar 

  • Smith AG, Hurley AM, Briden JC (1981) Phanerozic paleocontinental world maps. Cambridge Univ Press, Cambridge, 162 pp

    Google Scholar 

  • Smith DG (1982) The Cambridge encylopedia of earth sciences. Cambridge University Press, Cambridge, 496 pp

    Google Scholar 

  • Smith L, Chapman DS (1983) On the thermal effects of groundwater flow, 1. Regional scale systems. J Geophys Res 88: 593–608

    Google Scholar 

  • Stallman RW (1963) Computation of ground water velocities from temperature da a In. Methods of collecting and interpreting ground water data. US Geol Surv, Water Supply Pap 1544–H: 36–46

    Google Scholar 

  • Steininger FF, Bernor RL, Fahlbusch V (1990) European marine/continental chronological correlations.In: Lindsay EH, Fahlbusch V, Mein P (eds) European Neogene mammal chronology. Plenum, New York, pp 15–46

    Google Scholar 

  • Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitnmte reflectance based on chemical kinetics. AAPG Bull 74: 1559–1570

    Google Scholar 

  • Teichmüller M, Teichmüller R, Bartenstein H (1984) Inkohlung und Erdgas - eme neue Inkohlungskarte der Karbonoberflaeche in Nordwestdeutschland. Fortschr Geol Rheinl Westfalen 32: 11#x2013;34

    Google Scholar 

  • Tissot B (1969) Premières donnés sur les mécanismes et la cinetique de la formation du pétrole dans les sédiments. Simulation d’un schème reactionnel sur ordinateur. Rev Inst Fr Pétrol 24: 470–501

    Google Scholar 

  • Tissot B, Espitalié J (1975) L’évolution thermique de la matiere organique des sediments: Applications d’une simulation mathématique. Rev Inst Fr Pétrol 30: 743–777

    Google Scholar 

  • Tissot B, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin Heidelberg New York, 699 pp

    Google Scholar 

  • Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull 71: 1445–1466

    Google Scholar 

  • Ungerer P (1984) Models of petroleum formation. How to take into account geology and chemical kinetics. In: Durand B(ed) Thermal phenomena in sedimentary basins. Editions Technip, Paris, pp 235–246

    Google Scholar 

  • Ungerer P, Burrus J, Doligez B, Chenet PY, Bessis F (1990) Basin evaluation by integrated two- dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. AAPG Bull 74, 3: 309–335

    Google Scholar 

  • Vitorello I, Pollack HN (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J Geophys Res 85, B2: 983–995

    Google Scholar 

  • Waples DW (1980) Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bull 64: 916–926

    Google Scholar 

  • Welte DH (1966) Kohlenwasserstoffgenese in Sedimentgesteinen. Untersuchungen über den thermischen Abbau von Kerogen unter besonderer Berücksichtigung der n-Paraf- finbildung. Geol Rundsch 55: 131–144

    Google Scholar 

  • Welte DH (1989) The changing face of geology and future needs. Geologische Rundschau 78 /1: 7–20

    Google Scholar 

  • Welte DH (1995) The German-Norwegian Geoscientific Cooperation: a first summary report on an integrated study of several northern European basins, (unpublished)

    Google Scholar 

  • Welte DH, Yalçin MN (1985) Formation and occurrence of petroleum in sedimentary basins as deduced from computer-aided basin modeling. Int Conf on Petroleum geochemistry and exploration in the Afro-Asian region, Dehra Dun, Nov1985. Key Note Pap, pp 1 – 21

    Google Scholar 

  • Welte DH, Yalçin MN (1988) Basin modeling - a new method in petroleum geology. In: Advances organic geochemistry 1987. Mattavelli L, Novelli L (eds) Org Geochem 13: 141–152

    Google Scholar 

  • Welte DH, Yuekler MA (1981) Petroleum origin and accumulation in basin evolution – a quantitative model. AAPG Bull 65: 1387–1396

    Google Scholar 

  • Welte DH, Yalçin MN, Heynisch S, Schmitt KJ, Wygrala B (1985) Computer-aided basin study in the San Joaquin Basin, California, USA. Final Report, Integrated Exploration Systems (IES), Jülich, FRG (unpublished)

    Google Scholar 

  • Wernicke B (1985) Uniform-sense normal simple shear of the continental lithosphere. Can J Earth Sci 22: 108–125

    Google Scholar 

  • Woodbury AD, Smith L (1985) On the thermal effects of three-dimensional groundwater flow. J Geophys Res 90: 759–767

    Google Scholar 

  • Wygrala BP (1988) Integrated computer-aided basin modeling applied to analysis of hydrocarbon generation history in a northern Italian oil field. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Org Geochem 13: 187–197

    Google Scholar 

  • Wygrala BP (1989) Integrated study of an oil field in the southern Po Basin, northern Italy. Berichte der Kernforschungsanlage Jülich - No 2313, ISSN 0366–0885, 217 pp

    Google Scholar 

  • Wygrala BP, Yalçin MN, Dohmen L (1990) Thermal histories and overthrusting - application of numerical simulation technique. Advances in organic geochemistry 1989. Org Geochem 16: 267–285

    Google Scholar 

  • Yalçin MN (1988) Numerical simulation of the geologic evolution, the thermal history and the hydrocarbon generation potential of the Adana Basin (South Turkey). AAPG Bull 72: 1031– 1032 (Abstr)

    Google Scholar 

  • Yalçin MN (1990) Computer-aided basin modelling in hydrocarbon exploration. 8th Petroleum Congr of Turkey, Proc Geology, Turkish Assoc Petrol Geol, pp 228–239 (in Turkish with English Abstr)

    Google Scholar 

  • Yalçin MN (1991) Basin modelling and hydrocarbon exploration. J Petrol Sei Eng 5: 379–398

    Google Scholar 

  • Yalçin MN (1995) Contribution of the Kozlu-K20/G well to the computer-aided modelling studies in the Zonguldak basin. In: Yalçin MN, Gürdal G (eds) Zonguldak hardcoal basin research wells-I: Kozlu-K20/G. Spec Pubi of TÜBITAK, MAM, pp 173–196 (in Turkish with English Abstr)

    Google Scholar 

  • Yalçin MN, Görür N (1984) Sedimentological evolution of the Adana Basin. In: Tekeli O, Göncüoglu MC(eds) Proc Int Symp on the Geology of the Taurus Belt, pp 65–172

    Google Scholar 

  • Yalçin MN, Welte DH (1988) The thermal evolution of sedimentary basins and significance for hydrocarbon generation. Bull Turkish Petrol Geol, Ankara 1: 12–26

    Google Scholar 

  • Yalçin MN, Welte DH, Kumar SR, Misra KN, Mandal SK, Balan KC, Mehrotra KL, Lohar BL (1988) Three-dimensional computer-aided basin modeling of Cambay Basin, India. A case history of hydrocarbon generation. In: Kumar RK, Dwivedi P, Banerjie V, Gupta V (eds) Petroleum geochemistry and exploration in the Afro-Asian region. AA Balkema, Rotterdam, pp 417–450

    Google Scholar 

  • Yalçin MN, Schenk H J, Schaefer RG (1994) Modelling of gas generation in coals of the Zonguldak basin (northwestern Turkey). Int J Coal Geol 25: 195–212

    Google Scholar 

  • Yuekler MA, Kokesh F (1984) A review of models in petroleum resource estimation and organic geochemistry. In: Brooks J, Welte DH (eds) Adv Org Geochem 1: 69–113

    Google Scholar 

  • Yuekler MA, Cornford C, Welte DH (1978) One-dimensional model to simulate geologic, hydrodynamic and thermodynamic development of a sedimentry basin. Geol Rundsch 67: 960–979

    Google Scholar 

  • Ziegler AM (1987) Paleogeographic atlas project - current activities. Univ of Chicago (unpublished)

    Google Scholar 

  • Ziegler AM, Huiver ML, Lottes AL Schmachtengerg WF (1984) Uniformitarianism and palaeoclimates: inferences from the distribution of carbonate rocks. In: Berenchley PJ (ed) Fossils and climate. John Wiley & Sons, Chichester, pp 3–25

    Google Scholar 

  • Zwach C (1995) Diagenesis and temperature history of the Cadotte Sandstone, Alberta Deep Basin, Canada: integration of reservoir quality analysis and basin modeling. Thesis, University of Kiel, Germany. Berichte des Forschungszentrum Jülich, Germany, No 3082, 173 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yalçin, M.N., Littke, R., Sachsenhofer, R.F. (1997). Thermal History of Sedimentary Basins. In: Welte, D.H., Horsfield, B., Baker, D.R. (eds) Petroleum and Basin Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60423-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60423-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61128-8

  • Online ISBN: 978-3-642-60423-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics