Skip to main content

Convergence of Generalized Muscl Schemes

  • Chapter
Upwind and High-Resolution Schemes
  • 1940 Accesses

Abstract

Semidiscrete generalizations of the second order extension of Godunov’s scheme, known as the MUSCL scheme, are constructed, starting with any three point “E” scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made.

Received by the editors February 14, 1984. The research of this author was supported by the National Science Foundation under grant MCS 82-00788, the Army Research Office under grant DAAG 29-82-k-0090, and the National Aeronautics and Space Administration under grant NAG 1-270. Part of the research was carried out while the author was a visitor at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, Virginia, which is operated under NASA contract NASI-17070.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Chakravarthy and S. Osher, High resolution applications of the Osher upwind scheme for the Euler equations, Proc. AIAA Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 363–372.

    Google Scholar 

  2. P. Colella, A direct EulerianMUSCLscheme for gas dynamics, Lawrence Berkeley Lab. Report #LBL-14104, 1982.

    Google Scholar 

  3. R. J. Diperna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., 82 (1983), pp. 27–70.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. B. Engquist, and S. Osher, Stable and entropy condition satisfying approximations for transonic flow calculations, Math. Comp., 34 (1980), pp. 45–75.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), pp. 271 – 290.

    MathSciNet  Google Scholar 

  6. B. Gustafsson, The convergence rate for difference approximations to mixed initial boundary value problems, Math. Comp., 29 (1975), pp. 396 – 406.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Harten High resolution schemes for hyperbolic conservation laws, J. Comp. Phys., 49 (1983), pp. 357–393.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. A. Harten, On second order accurate Godunov-type schemes NASA AMES Report # NCA2-ORS25-201.

    Google Scholar 

  9. S. N. Kruzkov, First order quasi-linear equations in several independent variables Math. USSR Sb., 10 (1970), pp. 217–243.

    Article  Google Scholar 

  10. W. A. Mulder and B. Van Leer Implicit upwind computations for the Euler equations, AIAA Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 303–310.

    Google Scholar 

  11. S. Osher, Riemann solvers, the entropy condition, and difference approximations, this Journal, 21 (1984), pp. 217 – 235.

    MathSciNet  MATH  Google Scholar 

  12. S. Osher and S. R. Chakravarthy High resolution schemes and the entropy condition, this Journal, 21 (1984), pp. 955 – 984.

    MathSciNet  MATH  Google Scholar 

  13. P. K. Sweby High resolution schemes using flux limiters for hyperbolic conservation laws, this Journal, 21 (1984), pp. 995–1011.

    MathSciNet  MATH  Google Scholar 

  14. P. K. Sweby and M. J. Baines Convergence of Roe’s scheme for the general non-linear scalar wave equation Numerical Analysis Report, 8/81, Univ. Reading, 1981.

    Google Scholar 

  15. E. Tadmor Numerical viscosity and the entropy condition for conservative difference schemes ICASE NASA Contractor Report 172141, (1983), NASA Langley Research Center, Hampton, VA.

    Google Scholar 

  16. B. van Leer Towards the ultimate conservative difference scheme, II. Monotonicity and conservation combined in a second order scheme, J. Comp. Phys.,14 (1974), pp.361–376.

    Article  ADS  Google Scholar 

  17. B. van Leer, Towards the ultimate conservative difference scheme. V. A. second-order sequel to Godunov’s method, J. Comp. Phys., 32 (1979), pp. 101–136.

    Article  ADS  Google Scholar 

  18. H. C. Yee, R. F. Warming and A. Harten Implicit total variation diminishing (TVD) schemes for steady state calculations, Proc. AIAA Computational Fluid Dynamics Conference, Danvers, MA, 1983, pp. 110–127.

    Google Scholar 

  19. R. Sanders On convergence of monotone finite difference schemes with variable spatial differencing, Math. Comp.,40 (1983), pp. 91–106.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osher, S. (1997). Convergence of Generalized Muscl Schemes. In: Hussaini, M.Y., van Leer, B., Van Rosendale, J. (eds) Upwind and High-Resolution Schemes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60543-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60543-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64452-8

  • Online ISBN: 978-3-642-60543-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics